
CS61A – Homework 1.1 Kurt Meinz
University of California, Berkeley Summer 2002

Topic: Functional programming

Lectures: Monday 6/24, Tuesday 6/25

Reading: Abelson & Sussman, Section 1.1

Homework due 10 AM Monday, 7/1:

People who’ve taken CS 3: Don’t use the CS 3 higher-order procedures such as every in these
problems; use recursion.

1. Exercise 1.5, page 21.

2. Exercise 1.6, page 25. If you had trouble understanding the square root program in the book, explain
instead what will happen if you use new-if instead of if in the pigl Pig Latin procedure.

3. Write a procedure squares that takes a sentence of numbers as its argument and returns a sentence of
the squares of the numbers:

> (squares ’(2 3 4 5))
(4 9 16 25)

4. Write a procedure switch that takes a sentence as its argument and returns a sentence in which every
instance of the words I or me is replaced by you, while every instance of you is replaced by me except at the
beginning of the sentence, where it’s replaced by I. (Don’t worry about capitalization of letters.) Example:

> (switch ’(you told me that i should wake you up))
(i told you that you should wake me up)

5. Write a predicate ordered? that takes a sentence of numbers as its argument and returns a true value
if the numbers are in ascending order, or a false value otherwise.

6. Write a procedure ends-e that takes a sentence as its argument and returns a sentence containing only
those words of the argument whose last letter is E:

> (ends-e ’(please put the salami above the blue elephant))
(please the above the blue)

Continued on next page.

35



Homework assignment 1.1 continued...

7. Most versions of Lisp provide and and or procedures like the ones on page 19. In principle there is no
reason why these can’t be ordinary procedures, but some versions of Lisp make them special forms. Suppose,
for example, we evaluate

(or (= x 0) (= y 0) (= z 0))

If or is an ordinary procedure, all three argument expressions will be evaluated before or is invoked. But if
the variable x has the value 0, we know that the entire expression has to be true regardless of the values of
y and z. A Lisp interpreter in which or is a special form can evaluate the arguments one by one until either
a true one is found or it runs out of arguments. (This is called short-circuit evaluation.)

Your mission is to devise a test that will tell you whether Scheme’s and and or are short-circuit special forms
or ordinary functions. This is a somewhat tricky problem, but it’ll get you thinking about the evaluation
process more deeply than you otherwise might.

Why might it be advantageous for an interpreter to treat or as a special form and evaluate its arguments
one at a time? Can you think of reasons why it might be advantageous to treat or as an ordinary function?

Unix feature of the assignment: man

Emacs feature of the assignment: C-g, M-x apropos

There will be a “feature of the assignment” each assignment. These first features come first because they are
the ones that you use to find out about the other ones: Each provides documentation of a Unix or Emacs
feature. This assignment, type man man as a shell command to see the Unix manual page on the man program.
Then, in Emacs, type M-x (that’s meta-X, or ESC X if you prefer) describe-function followed by the Return
or Enter key, then apropos to see how the apropos command works. If you want to know about a command
by its keystroke form (such as C-g) because you don’t know its long name (such as keyboard-quit), you
can say M-x describe-key then C-g.

You aren’t going to be tested on these system features, but it’ll make the rest of your life a lot easier if you
learn about them. Seriously.

36


