
CS61A – Homework 2.1 Kurt Meinz
University of California, Berkeley Summer 2002

Topic: Recursion and iteration

Lectures: Monday 7/1, Tuesday 7/2

Reading: Abelson & Sussman, Section 1.2 through 1.2.4 (pages 31–47)

Homework due 10 AM Monday, 7/8:

1. Abelson & Sussman, exercises 1.16, 1.35, 1.37, 1.38

2. A “perfect number” is defined as a number equal to the sum of all its factors less than itself. For example,
the first perfect number is 6, because its factors are 1, 2, 3, and 6, and 1+2+3=6. The second perfect number
is 28, because 1+2+4+7+14=28. What is the third perfect number? Write a procedure (next-perf n)
that tests numbers starting with n and continuing with n+1, n+2, etc. until a perfect number is found. Then
you can evaluate (next-perf 29) to solve the problem. Hint: you’ll need a sum-of-factors subprocedure.

[Note: If you run this program when the system is heavily loaded, it may take half an hour to compute
the answer! Try tracing helper procedures to make sure your program is on track, or start by computing
(next-perf 1) and see if you get 6.]

3. Explain the effect of interchanging the order in which the base cases in the cc procedure on page 41 of
Abelson and Sussman are checked. That is, describe completely the set of arguments for which the original
cc procedure would return a different value or behave differently from a cc procedure coded as given below,
and explain how the returned values would differ.

(define (cc amount kinds-of-coins)
(cond

((or (< amount 0) (= kinds-of-coins 0)) 0)
((= amount 0) 1)
(else ... ) ) ) ; as in the original version

4. Give an algebraic formula relating the values of the parameters b, n, counter, and product of the expt
and exp-iter procedures given near the top of page 45 of Abelson and Sussman. (The kind of answer we’re
looking for is “the sum of b, n, and counter times product is always equal to 37.”)

Continued on next page.

39



Homework assignment 2.1 continued...

Extra for experts:

1. The partitions of a positive integer are the different ways to break the integer into pieces. The number 5
has seven partitions:

5 (one piece)
4, 1 (two pieces)
3, 2 (two pieces)
3, 1, 1 (three pieces)
2, 2, 1 (three pieces)
2, 1, 1, 1 (four pieces)
1, 1, 1, 1, 1 (five pieces)

The order of the pieces doesn’t matter, so the partition 2, 3 is the same as the partition 3, 2 and thus isn’t
counted twice. 0 has one partition.

Write a procedure number-of-partitions that computes the number of partitions of its nonnegative integer
argument.

2. Compare the number-of-partitions procedure with the count-change procedure by completing the
following statement:

Counting partitions is like making change, where the coins are ...

3. (Much harder!) Now write it to generate an iterative process; every recursive call must be a tail call.

Unix feature of the assignment: mkdir, cd, pwd, ls

Emacs feature of the assignment: C-M-f, C-M-b, C-M-n, C-M-p (move around Scheme code)

40


