
CS61A – Homework 6.2 Kurt Meinz
University of California, Berkeley Summer 2002

Topic: Metacircular evaluator

Lectures: Wednesday 7/31, Thursday 8/1

Reading: Abelson & Sussman, Section 4.1.1–6

A version of the metacircular evaluator is online in ~cs61a/lib/mceval.scm

Homework due 10 AM Monday, 8/5:

1. Abelson & Sussman, exercises 4.3, 4.6, 4.7, 4.10, 4.11, 4.13, 4.14, 4.15

2. Modify the metacircular evaluator to allow type-checking of arguments to procedures. Here is how the
feature should work. When a new procedure is defined, a formal parameter can be either a symbol as
usual or else a list of two elements. In this case, the second element is a symbol, the name of the formal
parameter. The first element is an expression whose value is a predicate function that the argument must
satisfy. That function should return #t if the argument is valid. For example, here is a procedure foo that
has type-checked parameters num and list:

> (define (foo (integer? num) ((lambda (x) (not (null? x))) list))
(nth num list))

FOO
> (foo 3 ’(a b c d e))
D
> (foo 3.5 ’(a b c d e))
Error: wrong argument type -- 3.5
> (foo 2 ’())
Error: wrong argument type -- ()

In this example we define a procedure foo with two formal parameters, named num and list. When foo is
invoked, the evaluator will check to see that the first actual argument is an integer and that the second actual
argument is not empty. The expression whose value is the desired predicate function should be evaluated
with respect to foo’s defining environment.

Extra for experts:

Abelson & Sussman, exercises 4.16 through 4.21

Unix feature of the assignment: !, history

Emacs feature of the assignment: C-x (, C-x ), C-x e (keyboard macros)

52


