
CS 61A Lecture Notes First Half of Week 1

Topic: Functional programming

Reading: Abelson & Sussman, Section 1.1 (pages 1–31)

Welcome to CS 61A, the world’s best computer science course, because we use the world’s best CS book as
the textbook. The only thing wrong with this course is that all the rest of the CS courses for the rest of
your life will seem a little disappointing (and repetitive).

Course overview comes later; now we’re going to jump right in so you can get started exploring on your own
in the lab.

In 61A we program in Scheme, which is an interactive language. That means that instead of writing a great
big program and then cranking it through all at once, you can type in a single expression and find out its
value. For example:
3 self-evaluating
(+ 2 3) function notation
(sqrt 16) names don’t have to be punctuation
(+ (* 3 4) 5) composition of functions

+ functions are things in themselves
’+ quoting
’hello can quote any word
’(+ 2 3) can quote any expression
’(good morning) even non-expression sentences

(first 274) functions don’t have to be arithmetic
(butfirst 274) (abbreviation bf)
(first ’hello) works for non-numbers
(first hello) reminder about quoting
(first (bf ’hello)) composition of non-numeric functions
(+ (first 23) (last 45)) combining numeric and non-numeric

(define pi 3.14159) special form
pi value of a symbol
’pi contrast with quoted symbol
(+ pi 7) symbols work in larger expressions
(* pi pi)

(define (square x)
(* x x)) defining a function

(square 5) invoking the function
(square (+ 2 3)) composition with defined functions

Terminology: the formal parameter is the name of the argument (x); the actual argument expression is the
expression used in the invocation ((+ 2 3)); the actual argument value is the value of the argument in the
invocation (5). The argument’s name comes from the function’s definition; the argument’s value comes from
the invocation.

83



Examples:

(define (plural wd)
(word wd ’s))

This simple plural works for lots of words (book, computer, elephant) but not for words that end in y (fly,
spy). So we improve it:

;;;;; In file cs61a/lectures/1.1/plural.scm
(define (plural wd)

(if (equal? (last wd) ’y)
(word (bl wd) ’ies)
(word wd ’s)))

If is a special form that only evaluates one of the alternatives.

Pig Latin: Move initial consonants to the end of the word and append “ay”; SCHEME becomes EMESCHAY.

;;;;; In file cs61a/lectures/1.1/pigl.scm
(define (pigl wd)

(if (pl-done? wd)
(word wd ’ay)
(pigl (word (bf wd) (first wd)))))

(define (pl-done? wd)
(vowel? (first wd)))

(define (vowel? letter)
(member? letter ’(a e i o u)))

Pigl introduces recursion—a function that invokes itself. More about how this works later in the week.

Another example: Remember how to play Buzz? You go around the circle counting, but if your number is
divisible by 7 or has a digit 7 you have to say “buzz” instead:

;;;;; In file cs61a/lectures/1.1/buzz.scm
(define (buzz n)

(cond ((equal? (remainder n 7) 0) ’buzz)
((member? 7 n) ’buzz)
(else n)))

This introduces the cond special form for multi-way choices.

Cond is the big exception to the rule about the meaning of parentheses; the clauses aren’t invocations.

84



Course overview:

Computer science isn’t about computers (that’s electrical engineering) and it isn’t primarily a science (we
invent things more than we discover them).

CS is partly a form of engineering (concerned with building reliable, efficient mechanisms, but in software
instead of metal) and partly an art form (using programming as a medium for creative expression).

Programming is really easy, as long as you’re solving small problems. Any kid in junior high school can
write programs in BASIC, and not just exercises, either; kids do quite interesting and useful things with
computers. But BASIC doesn’t scale up; once the problem is so complicated that you can’t keep it all in
your head at once, you need help, in the form of more powerful ways of thinking about programming. (But in
this course we mostly use small examples, because we’d never get finished otherwise, so you have to imagine
how you think each technique would work out in a larger case.)

We deal with three big programming styles/approaches/paradigms:
• Functional programming (1 months)

• Object-oriented programming (2 weeks)

• Logic programming (2 days)

The big idea of the course is abstraction: inventing languages that let us talk more nearly in a problem’s own
terms and less in terms of the computer’s mechanisms or capabilities. There is a hierarchy of abstraction:

Application programs
High-level language (Scheme)
Low-level language (C)
Machine language
Architecture (registers, memory, arithmetic unit, etc)
circuit elements (gates)
transistors
solid-state physics
quantum mechanics

In 61C we look at lower levels; all are important but we want to start at the highest level to get you thinking
right.

Style of work: Cooperative learning. No grading curve, so no need to compete. Homework is to learn
from; only tests are to test you. Don’t cheat; ask for help instead. (This is the first CS course; if you’re
tempted to cheat now, how are you planning to get through the harder ones?)

Functions.

• A function can have any number of arguments, including zero, but must have exactly one return value.
(Suppose you want two? You combine them into one, e.g., in a sentence.) It’s not a function unless you
always get the same answer for the same arguments.

• Why does that matter? If each little computation is independent of the past history of the overall
computation, then we can reorder the little computations. In particular, this helps cope with parallel
processors.

• The function definition provides a formal parameter (a name), and the function invocation provides an
actual argument (a value). These fit together like pieces of a jigsaw puzzle. Don’t write a “function” that
only works for one particular argument value!

• Instead of a sequence of events, we have composition of functions, like f(g(x)) in high school algebra. We
can represent this visually with function machines and plumbing diagrams.

85



Recursion:

;;;;; In file cs61a/lectures/1.1/argue.scm
> (argue ’(i like spinach))
(i hate spinach)
> (argue ’(broccoli is awful))
(broccoli is great)

(define (argue s)
(if (empty? s)

’()
(se (opposite (first s))

(argue (bf s)))))

(define (opposite w)
(cond ((equal? w ’like) ’hate)

((equal? w ’hate) ’like)
((equal? w ’wonderful) ’terrible)
((equal? w ’terrible) ’wonderful)
((equal? w ’great) ’awful)
((equal? w ’awful) ’great)
((equal? w ’terrific) ’yucky)
((equal? w ’yucky) ’terrific)
(else w) ))

This computes a function (the opposite function) of each word in a sentence. It works by dividing the
problem for the whole sentence into two subproblems: an easy subproblem for the first word of the sentence,
and another subproblem for the rest of the sentence. This second subproblem is just like the original problem,
but for a smaller sentence.

We can take pigl from last lecture and use it to translate a whole sentence into Pig Latin:

(define (pigl-sent s)
(if (empty? s)

’()
(se (pigl (first s))

(pigl-sent (bf s)))))

The structure of pigl-sent is a lot like that of argue. This common pattern is called mapping a function
over a sentence.

Not all recursion follows this pattern. Each element of Pascal’s triangle is the sum of the two numbers above
it:

(define (pascal row col)
(cond ((= col 0) 1)

((= col row) 1)
(else (+ (pascal (- row 1) (- col 1))

(pascal (- row 1) col) ))))

86



Normal vs. applicative order.

To illustrate this point we use a modified Scheme evaluator that lets us show the process of applicative or
normal order evaluation. We define functions using def instead of define. Then, we can evaluate expressions
using (applic (...)) for applicative order or (normal (...)) for normal order. (Never mind how this
modified evaluator itself works! Just take it on faith and concentrate on the results that it shows you.)

In the printed results, something like

(* 2 3) ==> 6

indicates the ultimate invocation of a primitive function. But

(f 5 9) ---->
(+ (g 5) 9)

indicates the substitution of actual arguments into the body of a function defined with def. (Of course,
whether actual argument values or actual argument expressions are substituted depends on whether you
used applic or normal, respectively.)

> (load "lectures/1.1/order.scm")
> (def (f a b) (+ (g a) b)) ; define a function
f
> (def (g x) (* 3 x)) ; another one
g
> (applic (f (+ 2 3) (- 15 6))) ; show applicative-order evaluation

(f (+ 2 3) (- 15 6))
(+ 2 3) ==> 5
(- 15 6) ==> 9

(f 5 9) ---->
(+ (g 5) 9)

(g 5) ---->
(* 3 5) ==> 15

(+ 15 9) ==> 24
24
> (normal (f (+ 2 3) (- 15 6))) ; show normal-order evaluation

(f (+ 2 3) (- 15 6)) ---->
(+ (g (+ 2 3)) (- 15 6))

(g (+ 2 3)) ---->
(* 3 (+ 2 3))

(+ 2 3) ==> 5
(* 3 5) ==> 15
(- 15 6) ==> 9

(+ 15 9) ==> 24 ; Same result, different process.
24

(continued on next page)

87



> (def (zero x) (- x x)) ; This function should always return 0.
zero
> (applic (zero (random 10)))

(zero (random 10))
(random 10) ==> 5

(zero 5) ---->
(- 5 5) ==> 0
0 ; Applicative order does return 0.

> (normal (zero (random 10)))

(zero (random 10)) ---->
(- (random 10) (random 10))

(random 10) ==> 4
(random 10) ==> 8

(- 4 8) ==> -4
-4 ; Normal order doesn’t.

The rule is that if you’re doing functional programming, you get the same answer regardless of order of
evaluation. Why doesn’t this hold for (zero (random 10))? Because it’s not a function! Why not?

Efficiency: Try computing

(square (square (+ 2 3)))

in normal and applicative order. Applicative order is more efficient because it only adds 2 to 3 once, not
four times. (But later in the semester we’ll see that sometimes normal order is more efficient.)

Note that the reading for the second half of the week is section 1.3, skipping 1.2 for the time
being.

88


