
CS 61A Lecture Notes First Half of Week 7

Topic: Analyzing evaluator, lazy evaluator

Reading: Abelson & Sussman, Sections 4.1.7, 4.2

• Analyzing Evaluator. To work with the ideas in this section you should first

(load "~cs61a/lib/analyze.scm")

in order to get the analyzing metacircular evaluator.

Inefficiency in the Metacircular Evaluator

Suppose we’ve defined the factorial function as follows:

(define (fact num)
(if (= num 0)

1
(* num (fact (- num 1)))))

What happens when we compute (fact 3)?

eval (fact 3)
self-evaluating? ==> #f if-alternative ==> (* num (fact (- num 1)))
variable? ==> #f eval (* num (fact (- num 1)))
quoted? ==> #f self-evaluating? ==> #f
assignment? ==> #f ...
definition? ==> #f list-of-values (num (fact (- num 1)))
if? ==> #f ...
lambda? ==> #f eval (fact (- num 1))
begin? ==> #f ...
cond? ==> #f apply <procedure fact> (2)
application? ==> #t eval (if (= num 0) ...)
eval fact

self-evaluating? ==> #f
variable? ==> #t
lookup-variable-value ==> <procedure fact>
list-of-values (3)
eval 3 ==> 3

apply <procedure fact> (3)
eval (if (= num 0) ...)

self-evaluating? ==> #f
variable? ==> #f
quoted? ==> #f
assignment? ==> #f
definition? ==> #f
if? ==> #t

eval-if (if (= num 0) ...)
if-predicate ==> (= num 0)
eval (= num 0)

self-evaluating? ==> #f
...

Four separate times, the evaluator has to examine the procedure body, decide that it’s an if expression, pull
out its component parts, and evaluate those parts (which in turn involves deciding what type of expression
each part is).

139



This is one reason why interpreted languages are so much slower than compiled languages: The interpreter
does the syntactic analysis of the program over and over again. The compiler does the analysis once, and the
compiled program can just do the part of the computation that depends on the actual values of variables.

Separating Analysis from Execution

Eval takes two arguments, an expression and an environment. Of those, the expression argument is (obvi-
ously!) the same every time we revisit the same expression, whereas the environment will be different each
time. For example, when we compute (fact 3) we evaluate the body of fact in an environment in which
num has the value 3. That body includes a recursive call to compute (fact 2), in which we evaluate the
same body, but now in an environment with num bound to 2.

Our plan is to look at the evaluation process, find those parts which depend only on exp and not on env,
and do those only once. The procedure that does this work is called analyze.

What is the result of analyze? It has to be something that can be combined somehow with an environment
in order to return a value. The solution is that analyze returns a procedure that takes only env as an
argument, and does the rest of the evaluation.

Instead of

(eval exp env) ==> value

we now have

1. (analyze exp) ==> exp-procedure
2. (exp-procedure env) ==> value

When we evaluate the same expression again, we only have to repeat step 2. What we’re doing is akin to
memoization, in that we remember the result of a computation to avoid having to repeat it. The difference
is that now we’re remembering something that’s only part of the solution to the overall problem, instead of
a complete solution.

We can duplicate the effect of the original eval this way:

(define (eval exp env)
((analyze exp) env))

The Implementation Details

Analyze has a structure similar to that of the original eval:

(define (eval exp env) (define (analyze exp)
(cond ((self-evaluating? exp) (cond ((self-evaluating? exp)

exp) (analyze-self-eval exp))
((variable? exp) ((variable? exp)
(lookup-var-val exp env)) (analyze-var exp))

... ...
((foo? exp) (eval-foo exp env)) ((foo? exp) (analyze-foo exp))
...)) ...))

The difference is that the procedures such as eval-if that take an expression and an environment as
arguments have been replaced by procedures such as analyze-if that take only the expression as argument.

140



How do these analysis procedures work? As an intermediate step in our understanding, here is a version of
analyze-if that exactly follows the structure of eval-if and doesn’t save any time:

(define (eval-if exp env)
(if (true? (eval (if-predicate exp) env))

(eval (if-consequent exp) env)
(eval (if-alternative exp) env)))

(define (analyze-if exp)
(lambda (env)

(if (true? (eval (if-predicate exp) env))
(eval (if-consequent exp) env)
(eval (if-alternative exp) env))))

This version of analyze-if returns a procedure with env as its argument, whose body is exactly the same
as the body of the original eval-if. Therefore, if we do

((analyze-if some-if-expression) some-environment)

the result will be the same as if we’d said

(eval-if some-if-expression some-environment)

in the original metacircular evaluator.

But we’d like to improve on this first version of analyze-if because it doesn’t really avoid any work. Each
time we call the procedure that analyze-if returns, it will do all of the work that the original eval-if did.

The first version of analyze-if contains three calls to eval. Each of those calls does an analysis of an
expression and then a computation of the value in the given environment. What we’d like to do is split each
of those eval calls into its two separate parts, and do the first part only once, not every time:

(define (analyze-if exp)
(let ((pproc (analyze (if-predicate exp)))

(cproc (analyze (if-consequent exp)))
(aproc (analyze (if-alternative exp))))

(lambda (env)
(if (true? (pproc env))

(cproc env)
(aproc env)))))

In this final version, the procedure returned by analyze-if doesn’t contain any analysis steps. All of the
components were already analyzed before we call that procedure, so no further analysis is needed.

The biggest gain in efficiency comes from the way in which lambda expressions are handled. In the original
metacircular evaluator, leaving out some of the data abstraction for clarity here, we have

(define (eval-lambda exp env)
(list ’procedure exp env))

The evaluator does essentially nothing for a lambda expression except to remember the procedure’s text
and the environment in which it was created. But in the analyzing evaluator we analyze the body of the
procedure; what is stored as the representation of the procedure does not include its text! Instead, the
evaluator represents a procedure in the metacircular Scheme as a procedure in the underlying Scheme, along
with the formal parameters and the defining environment.

141



Level Confusion

The analyzing evaluator turns an expression such as

(if A B C)

into a procedure

(lambda (env)
(if (A-execution-procedure env)

(B-execution-procedure env)
(C-execution-procedure env)))

This may seem like a step backward; we’re trying to implement if and we end up with a procedure that
does an if. Isn’t this an infinite regress?

No, it isn’t. The if in the execution procedure is handled by the underlying Scheme, not by the metacircular
Scheme. Therefore, there’s no regress; we don’t call analyze-if for that one. Also, the if in the underlying
Scheme is much faster than having to do the syntactic analysis for the if in the meta-Scheme.

So What?

The syntactic analysis of expressions is a large part of what a compiler does. In a sense, this analyzing
evaluator is a compiler! It compiles Scheme into Scheme, so it’s not a very useful compiler, but it’s really not
that much harder to compile into something else, such as the machine language of a particular computer.

A compiler whose structure is similar to this one is called a recursive descent compiler. Today, in practice,
most compilers use a different technique (called a stack machine) because it’s possible to automate the
writing of a parser that way. (I mentioned this earlier as an example of data-directed programming.) But if
you’re writing a parser by hand, it’s easiest to use recursive descent.

142



• Lazy evaluator. To load the lazy metacircular evaluator, say

(load "~cs61a/lib/lazy.scm")

Streams require careful attention

To make streams of pairs, the text uses this procedure:

;;;;; In file cs61a/lectures/4.2/pairs.scm
(define (pairs s t)

(cons-stream
(list (stream-car s) (stream-car t))
(interleave
(stream-map (lambda (x) (list (stream-car s) x))

(stream-cdr t))
(pairs (stream-cdr s) (stream-cdr t)))))

In exercise 3.68, Louis Reasoner suggests this simpler version:

(define (pairs s t)
(interleave
(stream-map (lambda (x) (list (stream-car s) x))

t)
(pairs (stream-cdr s) (stream-cdr t))))

Of course you know because it’s Louis that this doesn’t work. But why not? The answer is that interleave
is an ordinary procedure, so its arguments are evaluated right away, including the recursive call. So there is
an infinite recursion before any pairs are generated. The book’s version uses cons-stream, which is a special
form, and so what looks like a recursive call actually isn’t—at least not right away.

But in principle Louis is right! His procedure does correctly specify what the desired result should contain.
It fails because of a detail in the implementation of streams. In a perfect world, a mathematically correct
program such as Louis’s version ought to work on the computer.

In section 3.5.4 they solve a similar problem by making the stream programmer use explicit delay invocations.
(You skipped over that section because it was about calculus.) Here’s how Louis could use that technique:

(define (interleave-delayed s1 delayed-s2)
(if (stream-null? s1)

(force delayed-s2)
(cons-stream
(stream-car s1)
(interleave-delayed (force delayed-s2)

(delay (stream-cdr s1))))))

(define (pairs s t)
(interleave-delayed
(stream-map (lambda (x) (list (stream-car s) x))

t)
(delay (pairs (stream-cdr s) (stream-cdr t)))))

This works, but it’s far too horrible to contemplate; with this technique, the stream programmer has to
check carefully every procedure to see what might need to be delayed explicitly. This defeats the object of
an abstraction. The user should be able to write a stream program just as if it were a list program, without
any idea of how streams are implemented!

143



Lazy evaluation: delay everything automatically

Back in chapter 1 we learned about normal order evaluation, in which argument subexpressions are not
evaluated before calling a procedure. In effect, when you type

(foo a b c)

in a normal order evaluator, it’s equivalent to typing

(foo (delay a) (delay b) (delay c))

in ordinary (applicative order) Scheme. If every argument is automatically delayed, then Louis’s pairs
procedure will work without adding explicit delays.

Louis’s program had explicit calls to force as well as explicit calls to delay. If we’re going to make this
process automatic, when should we automatically force a promise? The answer is that some primitives need
to know the real values of their arguments, e.g., the arithmetic primitives. And of course when Scheme is
about to print the value of a top-level expression, we need the real value.

How do we modify the evaluator?

What changes must we make to the metacircular evaluator in order to get normal order?

We’ve just said that the point at which we want to automatically delay a computation is when an expression
is used as an argument to a procedure. Where does the ordinary metacircular evaluator evaluate argument
subexpressions? In this excerpt from eval:

(define (eval exp env)
(cond ...

((application? exp)
(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))
...))

It’s list-of-values that recursively calls eval for each argument subexpression. Instead we could make
thunks:

(define (eval exp env)
(cond ...

((application? exp)
(apply (ACTUAL-VALUE (operator exp) env)

(LIST-OF-DELAYED-VALUES (operands exp) env)))
...))

Two things have changed:

1. To find out what procedure to invoke, we use actual-value rather than eval. In the normal order
evaluator, what eval returns may be a promise rather than a final value; actual-value forces the promise
if necessary.

2. Instead of list-of-values we call list-of-delayed-values. The ordinary version uses eval to get the
value of each argument expression; the new version will use delay to make a list of thunks. (This isn’t quite
true, and I’ll fix it in a few paragraphs.)

144



When do we want to force the promises? We do it when calling a primitive procedure. That happens in
apply:

(define (apply procedure arguments)
(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))
...))

We change it to force the arguments first:

(define (apply procedure arguments)
(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure (MAP FORCE ARGUMENTS)))
...))

Those are the crucial changes. The book gives a few more details: Some special forms must force their
arguments, and the read-eval-print loop must force the value it’s about to print.

Reinventing delay and force

I said earlier that I was lying about using delay to make thunks. The metacircular evaluator can’t use
Scheme’s built-in delay because that would make a thunk in the underlying Scheme environment, and we
want a thunk in the metacircular environment. (This is one more example of the idea of level confusion.)
Instead, the book uses procedures delay-it and force-it to implement metacircular thunks.

What’s a thunk? It’s an expression and an environment in which we should later evaluate it. So we make
one by combining an expression with an environment:

(define (delay-it exp env)
(list ’thunk exp env))

The rest of the implementation is straightforward.

Notice that the delay-it procedure takes an environment as argument; this is because it’s part of the
implementation of the language, not a user-visible feature. If, instead of a lazy evaluator, we wanted to add
a delay special form to the ordinary metacircular evaluator, we’d do it by adding this clause to eval:

((delay? exp) (delay-it (cadr exp) env))

Here exp represents an expression like (delay foo) and so its cadr is the thing we really want to delay.

The book’s version of eval and apply in the lazy evaluator is a little different from what I’ve shown here.
My version makes thunks in eval and passes them to apply. The book’s version has eval pass the argument
expressions to apply, without either evaluating or thunking them, and also passes the current environment
as a third argument. Then apply either evaluates the arguments (for primitives) or thunks them (for non-
primitives). Their way is more efficient, but I think this way makes the issues clearer because it’s more
nearly parallel to the division of labor between eval and apply in the vanilla metacircular evaluator.

Memoization

Why didn’t we choose normal order evaluation for Scheme in the first place? One reason is that it easily
leads to redundant computations. When we talked about it in chapter 1, I gave this example:

(define (square x) (* x x))

(square (square (+ 2 3)))

In a normal order evaluator, this adds 2 to 3 four times!

(square (square (+ 2 3))) ==>

145



(* (square (+ 2 3)) (square (+ 2 3))) ==>
(* (* (+ 2 3) (+ 2 3)) (* (+ 2 3) (+ 2 3)))

The solution is memoization. If we force the same thunk more than once, the thunk should remember its
value from the first time and not have to repeat the computation. (The four instances of (+ 2 3) in the
last line above are all the same thunk forced four times, not four separate thunks.)

The details are straightforward; you can read them in the text.

146


