
UNIVERSITY of CALIFORNIA at Berkeley
Department of Electrical Engineering and Computer Sciences

Computer Sciences Division

CS61A Kurt Meinz
Structure and Interpretation of Computer Programs Summer 2002

Programming Project 4: A Logo Interpreter

This project is in two parts: Part I is due Thursday, August 8 at 11:59pm and Part II is due Monday,
August 12 at 3:00am. Please note that the due dates for this project are accelerated – get started early!
Please check the course website for updates and errata.

In Chapter 4 we study a Scheme interpreter written in Scheme, the metacircular evaluator. In this project
we modify that evaluator to turn it into an interpreter for a different programming language. This project
is valuable for several reasons: First, it will make you more familiar with the structure of the metacircular
evaluator because you’ll have to understand which procedure to modify in order to change some aspect of
its operation. Second, working with another language may help overcome some of the confusion students
often have about talking to two different versions of Scheme at once. In this project, it’ll be quite obvious
when you’re talking to Scheme and when you’re talking to Logo. Third, this project will encourage you to
think about the design of a programming language. Why did Scheme’s designers and Logo’s designers make
different choices?

This is a two-part project. As in the adventure game project, your group will divide itself into two
subgroups, A and B. Again, you will do most of the work in subgroups and then meet together for the final
steps. After the first part you should be able to enter instructions using primitive procedures with constant
arguments. In the second part you will add variables and user-defined procedures.

Before you begin working on the project, you have to know something about the Logo programming
language. The Logo-in-Scheme interpreter is structured like the metacircular evaluator, so to run it you say

% scm
> (load " cs61a/lib/obj.scm")
> (load " cs61a/lib/logo.scm")
> (load " cs61a/lib/logo-meta.scm")
> (initialize-logo)
?

and the question-mark prompt means that you’re talking to Logo. (The versions in the library are
incomplete; you’ll have to do the project before you can really run it!) Errors in your Logo instructions can
cause the interpreter to get a Scheme error message and return you to the Scheme prompt. If this happens,
type (driver-loop) to return to Logo. You should only use (initialize-logo) once, or else you will lose any
Logo variables or procedures you’ve defined.

If you want to experiment with a *real* Logo interpreter, to see how it’s supposed to work, just say

% logo

to the shell. You exit Logo by saying BYE.

Logo is essentially a dialect of Lisp. That makes it a good choice for this project, both because it’ll be
easy to teach you the language and because the modifications to the evaluator are not as severe as they
would be for an unrelated language. However, Logo was designed for educational use, particularly with
younger children. Many design decisions in Logo are meant to make the language more comfortable for a
beginner. For example, most Logo procedures are invoked in prefix form (first the procedure name, then the
arguments) as in Lisp, but the common arithmetic operators are also provided in the customary infix form:

? print sum 2 3
5

71

? print 2+3
5

(Note: As you work with the Logo-in-Scheme interpreter, you probably won’t be impressed by its comfort.
That’s because our interpreter has a lot of rough edges. The most important is in its error handling. A real
Logo interpreter would not dump you into Scheme with a cryptic message whenever you make a spelling
mistake! Bear in mind that this is only a partial implementation. Another rough edge is that THERE
IS NO PRECEDENCE AMONG INFIX OPERATORS, unlike real Logo, in which (as in most languages)
multiplication is done before addition. In this interpreter, infix operators are carried out from left to right,
so 3+4*5 is 7*5 or 35, not 3+20.)

Even in the trivial example above, adding two numbers, you can see several differences between Scheme
and Logo. The most profound, in terms of the structure of the interpreter, is that expressions and their
subexpressions are not enclosed in parentheses. (That is, each expression is not a list by itself.) In the
metacircular evaluator, EVAL is given one complete expression as an argument. In the Logo interpreter,
part of EVAL’s job will be to figure out where each expression begins and ends, by knowing how many
arguments are needed by each procedure, for example:

? print sentence word "now "here last [the invisible man]

Logo must understand that WORD requires two arguments (the quoted words that follow it) while
LAST requires one, and that the values returned by WORD and LAST are the two required arguments to
SENTENCE. (Also, PRINT requires one argument.)

Another important difference between Scheme and Logo is that in the latter you must explicitly say
PRINT to print something:

? print 2+1
3
? 2+1
You don’t say what to do with 3

An expression that produces an unused value causes an error message. Unlike Scheme, in which every
procedure returns a value, Logo makes a distinction between OPERATIONS that return a value and COM-
MANDS that are used for effect. PRINT is a command; SUM is an operation. This distinction means that
Logo has less of a commitment to functional programming style, and it makes the interpreter a little more
complicated because we have to keep track of whether we have a value or not. But in some ways it’s easier
for the user; we don’t keep saying things like ”set! returns some value or other, but the value is unspecified
and you’re not supposed to rely on it in your programs.” Also, Logo users don’t see the annoying extra
values that Scheme programs sometimes print because some procedure that was called for effect happens to
return () or #F as a value that gets printed.

One implication for the interpreter is that instead of Scheme’s read-eval-print loop

(define (driver-loop)
(display "> ")
(print (eval (read) the-global-environment))
(driver-loop))

Logo just has a read-eval loop without the print.

In Scheme something like 2+3 would be considered a single symbol, not a request to add two numbers.
The plus sign does not have special status as a delimiter of expressions; only spaces and parentheses separate
expressions. Logo is more like most other programming languages in that several characters are always
considered as one-character symbols even if not surrounded by spaces. These include arithmetic operators,
relational operators, and parentheses:

+− ∗/ =<> ()

Remember that in Scheme, parentheses are used to indicate list structure and are not actually part of

72

the internal representation of the structure. (In other words, there are no parentheses visible in the box-
and-pointer diagram for a list.) In this Logo interpreter, parentheses are special symbols, just like a plus
sign, and are part of the internal representation of an instruction line. Square brackets, however, play a role
somewhat like that of parentheses in Scheme, delimiting lists and sublists. One difference is that a list in
square brackets is automatically quoted, so [...] in Logo is like ’(...) in Scheme:

? print [hi there]

Logo uses the double quotation mark (”) to quote a word, so ”foo in Logo is like ’foo in Scheme. Don’t
get confused – these quotation marks are not used in pairs, as in Scheme string constants (”error message”);
a single one is used before a word to be quoted.

? print "hello

Just as the Scheme procedure READ reads an expression from the keyboard and deals with parentheses,
spaces, and quotation marks, you are given a LOGO-READ procedure that handles the special punctuation
in Logo lines. One important difference is that a Scheme expression is delimited by parentheses and can be
several lines long; LOGO-READ reads a single line and turns it into a list. If you want to play with it from
Scheme, first get out of Logo (if you’re in it) by typing Ĉ twice, then type the invocation (logo-read) and
the Logo stuff you want read all on the same line:

> (logo-read)print 2+(3*4)
(print 2 + (3 * 4))
> (logo-read)print se "this [is a [deep] list]
(print se "this (is a (deep) list))

Remember that the results printed in these examples are Scheme’s print representation for Logo data
structures! Don’t think, for example, ”LOGO-READ turns square brackets into parentheses.” What really
happens is that LOGO-READ turns square brackets into box-and-pointer lists, and Scheme’s print procedure
displays that structure using parentheses. Note: In the first of these two examples, the inner parentheses
in the returned value are *not* the boundaries of a sublist! They are parenthesis symbols. What logo-read
returned was a sentence with eight words: print, 2, +, (, 3, *, 4, and). This makes it a little tricky to be
sure what you’re seeing.

If you want to include one of Logo’s special characters in a Logo word, you can use backslash before it:

?print "a\+b
a+b

Also, as a special case, a special character other than square bracket is considered automatically back-
slashed if it’s immediately after a quotation mark:

?print "+
+

All of this is handled by LOGO-READ, a fairly complicated procedure. You are not required to write
this, or even to understand its algorithm, but you’ll need to understand the results in order to work on
EVAL.

Procedures and variables: Here is a Scheme procedure and an example of defining and using the corre-
sponding Logo procedure:

(define (factorial n)
(if (= n 0)

1
(* n (factorial (- n 1)))))

? to factorial :n
-> if :n=0 [output 1]
-> output :n * factorial :n-1
-> end

73

? print factorial 5
120

There are several noteworthy points here. First, a procedure definition takes several lines. The procedure
name and formal parameters are part of the first instruction line, headed by the TO special form. (This is
the only special form in Logo.) The procedure body is entered on lines in response to a special -¿ prompt.
These instruction lines are not evaluated, as they would be if entered at a ? prompt, but are stored as part
of the procedure text. The special keyword END on a line by itself indicates the end of the body.

Unlike Scheme, Logo does not have first-class procedures. Among other things, this means that a pro-
cedure name is not just a variable name that happens to be bound to a procedure. Rather, procedures and
variables are looked up in separate data structures, so that there can be a procedure and a variable with
the same name. (This is sometimes handy for names like LIST and WORD, which are primitive procedures
but are also convenient formal parameter names. In Scheme we resort to things like L or LST to avoid
losing access to the LIST procedure.) Variable names are part of a Scheme-like environment structure (but
with dynamic rather than lexical scope); procedure names are always globally accessible. To distinguish
a procedure invocation from a variable reference, the rule is that a word FOO without punctiation is an
invocation of the procedure named FOO, while the same word with a colon in front (:FOO) is a request for
the value of the variable with that name.

A Logo procedure can be either a command (done for effect) or an operation (returning a value). In this
example we are writing an operation, and we have to say so by using the OUTPUT command to specify the
return value. Once an OUTPUT instruction has been carried out, the procedure is finished; in this example,
if the IF in the first line of the body outputs 1, the second line of the body is not evaluated.

The file cs61a/lib/test.logo contains definitions of several Logo procedures that you can examine and
test to become more familiar with the language. You can load these definitions into your Logo interpreter
by copying it to your directory and then using Logo’s LOAD command:

? load "test.logo

(Notice that if you want to use a filename including slashes you have to backslash them to make them
part of the quoted word.)

Unlike Scheme’s IF, Logo’s IF is not a special form. You probably remember a homework exercise that
proved that it had to be, but instead Logo takes advantage of the fact that square brackets quote the list that
they delimit. The first argument to IF must be the word TRUE or the word FALSE. (Predicate functions
in Logo always return one of these two words. Logo does not accept any non-null value as true; anything
other than these two specific words is an error.) The second argument is a list containing instructions
that should be run conditionally. Because the list is enclosed in square brackets, the instructions are not
evaluated before IF is invoked. In general, anything that shouldn’t be evaluated in Logo must be indicated
by explicit quotation, with ”xxx or [xxx]. The only special form is TO, in which the procedure name and
formal parameter names are not evaluated.

The procedures first, butfirst, etc. that we’ve been using to manipulate words and sentences were invented
in Logo. The Scheme versions don’t quite work as smoothly as the real Logo versions, because Scheme has
four distinct data types for numbers, symbols, strings, and characters; all of these are a single type (words)
in Logo. If you evaluate (bf 104) in Scheme you get ”04”, not just 04, because the result has to be a Scheme
string in order not to lose the initial zero. Our Logo interpreter does manage to handle this:

? print bf 104
04
? print bf bf 104
4

The interpreter represents 04 internally as a Scheme symbol, not as a number. We can nevertheless do
arithmetic on it

? print 7+bf 104
11

74

because all the Logo arithmetic functions have been written to convert symbols-full-of-digits into regular
numbers before invoking the actual Scheme arithmetic procedure. (This is the job of MAKE-LOGO-ARITH.)

Okay, time for the actual project. You will need these files:

∼cs61a/lib/obj.scm object-oriented tools

∼cs61a/lib/logo.scm various stuff Logo needs

∼cs61a/lib/logo-meta.scm modified metacircular evaluator

These files (or your modified versions of the last two) must be loaded into Scheme in this order; each one
depends on the one before it. Much of the work has already been done for you. For example, eval and apply
in logo-meta.scm have been modified to use dynamic scope. (The names logo-eval and logo-apply are used
so as not to conflict with Scheme’s built-in eval and apply functions.)

For reference, ∼cs61a/lib/mceval.scm is the metacircular evaluator without the modifications for Logo.

Start by examining logo-eval. It has two parts: eval-prefix, which is comparable to the version of eval
in the text, handles expressions with prefix operations similar to Scheme’s syntax. The result of evaluating
such an expression is then given as an argument to handle-infix, which checks for a possible infix operator
following the expression. For now, we’ll ignore handle-infix, which you’ll write later in the project, and
concentrate on eval-prefix. Compare it with the version of eval in the text. The Scheme version has a COND
clause for each of several special forms. (And the real Scheme has even more special forms than the version
in the book.) Logo has only one special form, used for procedure definition, but to make up for it, eval-prefix
has a lot of complexity concerning parentheses. An ordinary application (handled by the else clause) is
somewhat more complicated than in Scheme because we must figure out the number of arguments required
before we can collect the arguments. Finally, an important subtle point is that the Logo version uses LET in
several places to enforce a left-to-right order of evaluation. In Scheme the order of evaluation is unspecified,
but in Logo we don’t know where the second argument expression starts, for example, until we’ve finished
collecting and evaluating the first argument expression.

PART I. These four problems (two per subgroup) must all be done before you’ll be able to run the Logo
interpreter at all.

SUBGROUP A:

A1. As explained above, EVAL can’t be given a single complete expression as its argument, because
expressions need not be delimited by parentheses and so it’s hard to tell where an expression ends. Instead,
EVAL must read through the line, one element at a time, to figure out how to group things. LOGO-READ,
you’ll recall, gives us a Logo instruction line in the form of a list. Each element of the list is a ”token” (a
symbol, a number, a punctuation character, etc.) and EVAL reads them one by one. You might imagine
that EVAL would accept this list as its argument and would get to the next token by CDRing down, like
this:

(define (eval-prefix line-list env)
...
(let ((token (car line-list)))

...
(set! line-list (cdr line-list))
...)

...)

but in fact this won’t quite work because of the recursive invocation of eval-prefix to evaluate subexpres-
sions. Consider a line like

print sum (product 2 3) 4

One invocation of eval-prefix would be given the list

(sum (product 2 3) 4)

75

as argument. It would cheerfully cdr down its local line-list variable, until it got to the word ”product”;
at that point, another invocation of eval-prefix would be given the ENTIRE REMAINING LIST as its
argument (since we don’t know in advance how much of that list is part of the subexpression). When the
inner eval-prefix finishes, the outer one still needs to read another argument expression, but it has no way
of knowing how much of the list was read by the inner one.

Our solution is to invent a LINE-OBJECT data type. This object will be used as the argument to
logo-eval, which in turn uses it as argument to eval-prefix; the line-object will remember, in its local state,
how much of the line has been read. The very same line-object will be the argument to the inner eval-prefix.
When that finishes, the line object (still available to the outer invocation of eval-prefix) has already dispensed
some tokens and knows which tokens remain to be processed.

Your job is to define the LINE-OBJECT class. It has one instantiation variable, a list containing the
text of a line. Objects in the class should accept these messages:

(ask line-obj ’empty?) should return #T if there is nothing
left to read in the line-list, #F if
there are still tokens unread.

(ask line-obj ’next) should return the next token waiting
to be read in the line, and remove
that token from the list.

(ask line-obj ’put-back token) should stick the given token at the
front of the line-list, so that the
next NEXT message will return it.
This is used when EVAL has to read
past the end of an expression to be
sure that it really is the end, but
then wants to un-read the extra
token.

There are several places in logo-meta.scm that send these messages to the objects you’ll create, so you
can see examples of their use. You’ll get ASK from obj.scm and should use its syntax conventions.

Also write a short procedure (make-line-obj text) that creates and returns a line object instance with the
given text. This procedure is invoked in several places within the Logo interpreter.

A2. We need to be able to print the results of Logo computations. Logo provides three primitive
procedures for this purpose:

? print [a [b c] d] ; don’t show outermost brackets
a [b c] d
? show [a [b c] d] ; do show outermost brackets
[a [b c] d]
? type [a [b c] d] ; don’t start new line after printing
a [b c] d?

PRINT and SHOW can be defined in terms of TYPE, and we have done so in the procedures logo-print
and logo-show (defined in logo.scm). Your job is to write logo-type. It will take a word or list as argument,
and print its contents, putting square brackets around any sublists but not around the entire argument.
You should use the Scheme primitive DISPLAY to print the individual words. DISPLAY is described in the
Scheme reference manual in your course reader. Hint: (display ” ”) will print a space.

***** When you’ve finished these two steps, you must combine your work with that of subgroup B.
When you’ve done that, you should be able to run the interpreter and carry out instructions involving only
primitive procedures and constant (quoted or self-evaluating) data. (You aren’t yet ready for variables,
conditionals, or defining procedures, and you can only use prefix arithmetic operators.) Turn in a transcript
showing your interpreter at work. *****

76

(There are some suggestions for things to test at the end of subgroup B’s problems for this week.)

SUBGROUP B:

B1. A Logo line can contain more than one instruction:

? print "a print "b
a
b
?

This capability is important when an instruction line is given as an argument to something else:

? to repeat :num :instr
-> if :num=0 [stop]
-> run :instr
-> repeat :num-1 :instr
-> end
? repeat 3 [print "hi print "bye]
hi
bye
hi
bye
hi
bye
?

On the other hand, an instruction line used as argument to something might not contain any complete
instructions at all, but rather an expression that provides a value to a larger computation:

? print ifelse 2=3 [5*6] [8*9]
72
?

In this example, when the IFELSE procedure is invoked, it will turn the list [8*9] into an instruction line
for evaluation. (Note: This example is here to explain to you why you need to handle an ”instruction line”
without a complete instruction. You can’t actually type this into your Logo interpreter yet; you haven’t
invented infix notation or predicates.)

Logo-eval’s job is to evaluate one instruction or expression and return its value. (An instruction, in which
a command is applied to arguments, has no return value. In our interpreter this is indicated by logo-eval
returning the symbol =NO-VALUE= instead of a value.) We need another procedure that evaluates an
entire line, possibly containing several instructions, by repeatedly invoking logo-eval until either the line is
empty (in which case =NO-VALUE= should be returned) or logo-eval returns a value (i.e., a value other
than =NO-VALUE=), in which case that value should be returned. You will write this procedure, called
eval-line, like this:

(define (eval-line line-obj env)
...)

You’ll find several invocations of eval-line in the interpreter, most importantly in driver-loop where each
line you type after a ? prompt is evaluated.

B2. Conditionals. The Logo primitives IF and IFELSE require as argument the word TRUE or the word
FALSE. Of course our implementation of the Logo predicates will use Scheme predicates, which return #T
and #F instead.

Your job is to write the higher-order function LOGO-PRED whose argument is a Scheme predicate and
whose return value is a Logo predicate, i.e., a function that returns TRUE instead of #T and FALSE instead
of #F. This higher-order function is used in the table of primitives like this:

77

(add-prim ’emptyp 1 (logo-pred empty?))

That is, the Scheme predicate EMPTY? becomes the Logo predicate EMPTYP. (The ”P” at the end of
the name stands for ”Predicate,” by the way. Some versions of Logo use this convention, while others use
? at the end the way Scheme does. The educational merits of the two conventions are hotly debated in the
Logo community.)

The spiffiest way to do this is to create a LOGO-PRED that works for predicate functions of any number
of arguments. To do that you have to know how to create a Scheme function that accepts any number of
arguments. You do it with (lambda args (blah blah)). That is, the formal parameter name ARGS is not
enclosed in parentheses. When the procedure is called, it will accept any number of actual arguments and
they will all be put in a list to which ARGS is bound. (This is discussed in exercise 2.20.)

Alternatively, I’ll accept two procedures LOGO-PRED-1 for predicate functions of one argument and
LOGO-PRED-2 for functions of two arguments, but then you’ll have to fix the add-prim invocations accord-
ingly.

By the way, IF and IFELSE won’t work until your group does problem A3 next week. Meanwhile, you
should just be able to PRINT the values returned by the predicates, once you’ve combined the work of your
two subgroups this week.

***** When you’ve finished these two steps, you must combine your work with that of subgroup A.
When you’ve done that, you should be able to run the interpreter and carry out instructions involving only
primitive procedures and constant (quoted or self-evaluating) data. (You aren’t yet ready for variables,
conditionals, or defining procedures, and you can only use prefix arithmetic operators.) Turn in a transcript
showing your interpreter at work. *****

Try these examples and others:
? print 3
3
? print sum product 3 4 8
20
? print [this is [a nested] list]
this is [a nested] list
? print 3 print 4
3
4
? print equalp 4 6
false
?

PART II. When you’re done with these six problems (two individual problems for each sub-group, two
common problems), the Logo interpreter will be complete. The common problems are hard, so don’t wait
until the last minute to merge your subgroups’ work!

SUBGROUP A

A3. Ordinarily, each Logo procedure accepts a certain fixed number of arguments. There are two
exceptions to this rule. First, some primitive procedures (but only primitives) can accept variable numbers
of arguments, just as in Scheme. In Logo, such a procedure has a ”default” number of arguments – this is
the number that logo-eval will ordinarily look for. If you want to use a different number of arguments, you
must enclose the entire expression in parentheses as you would in Scheme:

? print sum 2 3
5
? print sum 2 3 4 ; this is an error
5
You don’t say what to do with 4

78

? print (sum 2 3 4)
9
?

Second, certain primitive procedures need access to the current environment in order to do their job. For
example, MAKE, which is Logo’s equivalent to SET!, takes two arguments, a variable name and a new value,
but the procedure that implements it requires a third argument, the current environment, since the job is
done by modifying that environment. In the Scheme metacircular evaluator, this problem is less noticeable
because SET! is a special form anyway – its first argument isn’t evaluated – and so it is handled directly by
eval itself. In Logo we have no special forms except for TO, so MAKE is an ordinary procedure handled by
logo-apply, but we still need to indicate that it needs the environment as an extra ”hidden” argument.

In this interpreter a procedure is represented as a four-element list:

(name type-flag arg-count text)

NAME is the procedure’s name. (Unlike Scheme’s first-class procedures which can be created by lambda
without a name, every Logo procedure must have a name in order to exist at all.)

TYPE-FLAG is a symbol, either PRIMITIVE or COMPOUND. The former means that the procedure
is written in Scheme (or is a Scheme primitive); the latter means that the procedure was defined in Logo,
using TO.

ARG-COUNT is the number of arguments that the procedure expects. For most procedures, this is a
straightforward nonnegative integer. In this part of the project, we are going to deal with the exceptions
discussed above. For a procedure that accepts variable numbers of arguments, ARG-COUNT will be a nega-
tive integer, the negative of the default number of arguments. For a procedure that requires the environment
as an extra argument, ARG-COUNT will be a list whose only element is the number of visible arguments,
before the environment is added. (No procedure is in both categories.) Examples:

(list ’type ’primitive 1 logo-type) ;ordinary case (list ’word ’primitive -2 word) ;variable # of args (list
’make ’primitive (2) make) ;2 visible args plus env

These lists are generated by the add-prim procedure that you can see in logo-meta.scm along with entries
for all the existing primitives.

TEXT is either a Scheme procedure, for a primitive, or a list whose first element is a list of formal
parameters and whose remaining elements are instruction lines making up the body of the procedure, for a
user-defined Logo procedure.

The actual collection of argument values, corresponding to list-of-values in the metacircular evaluator, is
called collect-n-args in the Logo interpreter. It has an extra argument, n, which is the number of arguments
to be collected from the line-object. If that argument is negative, then collect-n-args will keep evaluating
argument expressions until it sees a right parenthesis. (Remember that we allow a variable number of
arguments only if the expression is in parentheses.)

Your job is to modify the invocation of collect-n-args to handle both of the special cases described here.
If the arg-count in the procedure is a list, call collect-n-args with its car as the number, and cons the current
environment onto the front of the resulting argument list. If the arg-count is negative, you should use its
absolute value as the number unless this invocation is inside parentheses. (There is a local variable paren-flag
that will be #T in this situation, #F otherwise.)

Once you’ve done this, modify the primitive table entries for sum, product, word, sentence, and list so
that they can accept variable numbers of arguments. Then test your work.

A4. Infix arithmetic. Logo-eval calls eval-prefix to find a Scheme-style expression and evaluate it. Then
it calls

(handle-infix value line-obj env)

We have provided a ”stub” version of handle-infix that doesn’t actually handle infix, but merely returns

79

the value you give it. Your task is to write a version that really works. The situation is this. We are dealing
with the instruction line

? print 3 + 2

We are inside the logo-eval that’s preparing to invoke PRINT. It knows that PRINT requires one argu-
ment, so it recursively called logo-eval. (Actually logo-eval calls eval-prefix, which calls collect-n-args, which
calls logo-eval.) The inner logo-eval called eval-prefix, which found the expression 3, whose value is 3. But
the argument to PRINT isn’t really just 3; it’s 3 + 2.

The job of handle-infix is to notice that the next token on the line is an infix operator (one of + - * /
= ¡ ¿), find the corresponding procedure, and apply it to the already-found value (in this case, 3) and the
value of the expression after the infix operator (in this case, 2). Remember that this following expression
need not be a single token; you have to evaluate it using eval-prefix. If the next token isn’t an infix operator,
you must put it back into the line and just return the already-found value. Remember that there may be
another infix operator after you deal with the first one, as in the instruction

? print 3 * 4 + 5
17

We’ve provided a procedure called de-infix that takes an infix operator as argument and returns the name
of the corresponding Logo primitive procedure.

To further your understanding of this problem, answer the following question: What difference would
it make if your handle-infix invoked logo-eval instead of eval-prefix as suggested above? Show a sample
instruction for which this change would give a different result.

By the way, don’t forget that we are not asking you to handle the precedence of multiplication over
addition correctly. Your handle-infix will do all infix operations from left to right, unless parentheses are
used. (You don’t have to deal with parentheses in handle-infix. Logo-eval already knows about them.)

**** Now skip over subgroup B’s problems to get to the common problems 5 and 6. You must merge
the results of A3, A4, B3, and B4 before you can solve the common problems. *****

SUBGROUP B:

B3. We are going to invent variables. Most of the work has already been done, because the environment
structure is exactly like that of the Scheme metacircular evaluator. There are two things left for you to
handle: First, eval-prefix uses data abstraction procedures VARIABLE? and VARIABLE-NAME to detect
and process a variable reference. In Scheme, any symbol is a variable reference, since procedure names are
variables too. In Logo, a variable reference is a symbol whose first character is a colon (:) and the actual
variable name is all but the first character of that symbol. Write the necessary procedures.

Second, Scheme provides two different special forms, DEFINE and SET!, for creating a new variable
binding and for changing an existing binding. In Logo there is one procedure, MAKE, that serves both
purposes. If there is already a binding for the given name in the current environment, then MAKE acts like
SET!. If not, then MAKE creates a new binding in the global environment. (Note, this is not necessarily
the current frame.) Make the MAKE procedure in logo.scm call the right logo-meta.scm procedures to
accomplish this, modifying those procedures if necessary.

Test your work:

? make "foo 27
? print :foo
27
?

(Why the quotation mark? Remember, MAKE isn’t a special form. The VALUE OF its first actual
argument expression has to be the name we want to bind.)

Note: You can’t fully test this yet, because you won’t know if it does the right thing for local variables
until we can define and invoke procedures. For now, just test that it works for global variables.

80

B4. Time to define procedures! You are going to write eval-definition, a procedure that accepts a line-obj
as argument. (The corresponding feature in the metacircular evaluator also needs the environment as an
argument, but recall that in Logo procedures are not part of the environment; they go in a separate, global
list.) The line-obj has just given out the token TO, and is ready to provide the procedure name and formal
parameters. Your job is to read those, then enter into an interactive loop in which you read Logo lines and
store them in a list, the procedure body. You keep doing this until you see a line that contains only the word
END. You put together a procedure representation in the form

(list name ’compound arg-count (cons formals body))

and you prepend this to the procedure list in the (Scheme) variable the-procedures. The arg-count is
the number of formal parameters you found. Formals is a list of the formal parameters, without the colons.
Body is the list of instructions, not including the END line. Don’t turn the lines into line-objects; that’ll
happen when the procedure is invoked.

To print the prompt, say (prompt ”-¿ ”).

It’s going to be a little hard to test the results of your work until you can invoke user-defined procedures,
which requires one more step. Meanwhile you could leave Logo, and ask Scheme to look at the first element
of the-procedures to see if you’ve done it right.

**** You must merge the results of A3, A4, B3, and B4 before **** you can solve the common problems
5 and 6.

COMMON PROBLEMS, BOTH SUBGROUPS:

5 . Calling procedures. In the metacircular evaluator, apply sets up an environment and uses eval-
sequence to evaluate each expression in the procedure body. The Logo interpreter does the same, except
that the job of eval-sequence is different. Its argument is a list of instruction lists. Each of those lists
must be turned into a line-object before it can be evaluated. Also, we must take into account the fact
that instructions are different from expressions; the instruction lines in the procedure body should generally
return =NO-VALUE= when evaluated. If not, eval-sequence must signal the error ”You don’t say what to
do with” the value.

The exceptions are the two primitive commands that can end a procedure invocation early, STOP (for
commands) and OUTPUT (for operations). If STOP is invoked, it will return the symbol =STOP=; if
OUTPUT is invoked, it will return a pair whose car is =OUTPUT= and whose cdr is the desired return
value:

(add-prim ’stop 0 (lambda () ’=stop=))
(add-prim ’output 1 (lambda (x) (cons ’=output= x)))

If eval-sequence evaluates a STOP, it should immediately return =NO-VALUE=. If it gets an OUTPUT,
it should immediately return the value provided (the cdr of that pair).

Once you’ve written eval-sequence, you should be able to define and invoke procedures.

6. Static variables. This is a feature that isn’t in normal versions of Logo, but our version will be extra
powerful! As we’ve discussed in class, one of the problems with dynamic scope is that you can’t create local
state variables by defining a procedure inside the scope of a variable the way we do in Scheme. We are going
to invent a mechanism by which a procedure definition can specify the names and initial values of local state
variables. Here is an example showing the notation:

? to count :increase static :counter 2+3
-> make "counter :counter + :increase
-> print :counter
-> end

? count 20
25
? count 1

81

26

? print :counter
ERROR -- UNBOUND VARIABLE COUNTER

In the first line of the procedure definition, STATIC is a keyword that indicates the end of the formal
parameters and the beginning of alternating names and values of local state variables. In the example shown
here, there is only one local state variable, named COUNTER, with an initial value of 5. (Notice that the
name is not evaluated, but the initial value expression is evaluated, in the global environment.)

When the procedure is defined, it is given a local state variable named COUNTER whose value is 5.
Each time the procedure is called, it changes the value of that variable. As the example shows, the name
COUNTER is not defined in the global environment.

To make this work, you must give every compound procedure a private frame containing its static
variables. This frame will be a fifth element of the list that represents a procedure. When a compound
procedure is invoked, you will still extend the current (dynamic) environment, but you’ll extend it with
two frames: the remembered static-variable frame, and the standard newly-created frame in which formal
parameters are bound to actual arguments.

Most of your work will be done in two places: the place where TO lines are parsed, and the place where
procedures are invoked.

The interpreter is now complete. Congratulations!

Optional for hotshots: Handle infix precedence properly.

(Of course there’s a lot more that could be done, especially about error handling, but also including
missing primitives. Logo enthusiasts might like to try to invent LOCAL, CATCH, THROW, DEFINE,
TEXT, etc.)

82

