
CS61A – Lab Assignment 1.1 Kurt Meinz
University of California, Berkeley Summer 2002

Try to get as much done as possible, but don’t panic if you don’t finish everything.

0. Login to your user account and change your password – instructions are provided on the account form.
Be aware that it may take several minutes for your new password to be recognized by all the machines.

1. Start the Emacs editor, either by typing emacs in your main window or by selecting it from the alt-middle
mouse menu. (Your TA will show you how to do this.) From the Help menu, select the Emacs tutorial. You
need not complete the entire tutorial at the first session, but you should do so eventually.

2. Start Scheme, either by typing scm in your main window or by typing meta-S in your Emacs window.
Type each of the following expressions into Scheme, ending the line with the Enter (carriage return) key.
Think about the results! Try to understand how Scheme interprets what you type.
3 (first ’hello)

(+ 2 3) (first hello)

(+ 5 6 7 8) (first (bf ’hello))

(+) (+ (first 23) (last 45))

(sqrt 16) (define pi 3.14159)

(+ (* 3 4) 5) pi

+ ’pi

’+ (+ pi 7)

’hello (* pi pi)

’(+ 2 3) (define (square x) (* x x))

’(good morning) (square 5)

(first 274) (square (+ 2 3))

(butfirst 274)

3. Use Emacs to create a file called pigl.scm in your directory containing the Pig Latin program shown
below:
(define (pigl wd)

(if (pl-done? wd)

(word wd ’ay)

(pigl (word (bf wd) (first wd)))))

(define (pl-done? wd)

(vowel? (first wd)))

(define (vowel? letter)

(member? letter ’(a e i o u)))

If you end each line with the linefeed key, instead of the return key, Emacs will automatically
indent the lines of your program properly.

4. Now run Scheme. You are going to create a transcript of a session using the file you just created, like
this:
(transcript-on "lab1") ; This starts the transcript file.

(load "pigl.scm") ; This reads in the file you created earlier.

(pigl ’scheme) ; Try out your program.

; Feel free to try more test cases here!

(trace pigl) ; This is a debugging aid. Watch what happens

(pigl ’scheme) ; when you run a traced procedure.

(transcript-off)

(exit)

5. Use lpr to print your transcript file.

Continued on next page.

14

Lab Assignment 1.1 continued...

6. Predict what Scheme will print in response to each of these expressions. Then try it and make sure your
answer was correct, or if not, that you understand why!
(define a 3)

(define b (+ a 1))

(+ a b (* a b))

(= a b)

(if (and (> b a) (< b (* a b)))

b

a)

(cond ((= a 4) 6)

((= b 4) (+ 6 7 a))

(else 25))

(+ 2 (if (> b a) b a))

(* (cond ((> a b) a)

((< a b) b)

(else -1))

(+ a 1))

((if (< a b) + -) a b)

7. In the shell, type the command

cp ~cs61a/lib/plural.scm .

(Note the period at the end of the line!) This will copy a file from the class library to your own directory.
Then, using emacs to edit the file, modify the procedure so that it correctly handles cases like (plural ’boy).

8. Define a procedure that takes three numbers as arguments and returns the sum of the squares of the two
larger numbers.

9. Write a procedure dupls-removed that, given a sentence as input, returns the result of removing duplicate
words from the sentence. It should work this way:
> (dupls-removed ’(a b c a e d e b))

(c a d e b)

> (dupls-removed ’(a b c))

(a b c)

> (dupls-removed ’(a a a a b a a))

(b a)

15

CS61A – Lab Assignment 1.2 Kurt Meinz
University of California, Berkeley Summer 2002

1. For each of the following expressions, what must f be in order for the evaluation of the expression to
succeed, without causing an error? For each expression, give a definition of f such that evaluating the
expression will not cause an error, and say what the expression’s value will be, given your definition.
f

(f)

(f 3)

((f))

(((f)) 3)

2. Find the values of the expressions
((t 1+) 0)

((t (t 1+)) 0)

(((t t) 1+) 0)

where 1+ is a primitive procedure that adds 1 to its argument, and t is defined as follows:
(define (t f)

(lambda (x) (f (f (f x)))))

Work this out yourself before you try it on the computer!

3. Find the values of the expressions
((t s) 0)

((t (t s)) 0)

(((t t) s) 0)

where t is defined as in question 2 above, and s is defined as follows:
(define (s x)

(+ 1 x))

4. Consider a Scheme function g for which the expression
((g) 1)

returns the value 3 when evaluated. Determine how many arguments g has. In one word, also describe as
best you can the type of value returned by g.

5. Write a procedure substitute that takes three arguments: a new word, an old word, and a sentence. It
should return a copy of the sentence, but with every occurrence of the old word replaced by the new word.
For example:

> (substitute ’maybe ’yeah ’(she loves you yeah yeah yeah))
(she loves you maybe maybe maybe)

Continued on next page.

16

Lab Assignment 1.2 continued...

6. First, type the definitions

(define a 7)

(define b 6)

into Scheme. Then, fill in the blank in the code below with an expression whose value depends on both a

and b to determine a return value of 24. Verify in Scheme that the desired value is obtained.

(let

((a 3) (b (+ a 2)))

)

7. Write and test the make-tester procedure. Given a word w as argument, make-tester returns a procedure
of one argument x that returns true if x is equal to w and false otherwise. Examples:

> ((make-tester ’hal) ’hal)

#t

> ((make-tester ’hal) ’cs61a)

#f

> (define sicp-author-and-astronomer? (make-tester ’gerry))

> (sicp-author-and-astronomer? ’hal)

#f

> (sicp-author-and-astronomer? ’gerry)

#t

17

CS61A – Lab Assignment 2.1 Kurt Meinz
University of California, Berkeley Summer 2002

This lab exercise concerns the change counting program on pages 40–41 of Abelson and Sussman.

1. Identify two ways to change the program to reverse the order in which coins are tried, that is, to change
the program so that pennies are tried first, then nickels, then dimes, and so on.

2. Abelson and Sussman claim that this change would not affect the correctness of the computation. However,
it does affect the efficiency of the computation. Implement one of the ways you devised in exercise 1 for
reversing the order in which coins are tried, and determine the extent to which the number of calls to cc
is affected by the revision. Verify your answer on the computer, and provide an explanation. Hint: limit
yourself to nickels and pennies, and compare the trees resulting from (cc 5 2) for each order.

3. Modify the cc procedure so that its kinds-of-coins parameter, instead of being an integer, is a sentence
that contains the values of the coins to be used in making change. The coins should be tried in the sequence
they appear in the sentence. For the count-change procedure to work the same in the revised program as
in the original, it should call cc as follows:

(define (count-change amount)

(cc amount ’(50 25 10 5 1)))

4. Many Scheme procedures require a certain type of argument. For example, the arithmetic procedures
only work if given numeric arguments. If given a non-number, an error results.

Suppose we want to write safe versions of procedures, that can check if the argument is okay, and either
call the underlying procedure or return #f for a bad argument instead of giving an error. (We’ll restrict our
attention to procedures that take a single argument.)

> (sqrt ’hello)

ERROR: magnitude: Wrong type in arg1 hello

> (type-check sqrt number? ’hello)

#f

> (type-check sqrt number? 4)

2

Write type-check. Its arguments are a function, a type-checking predicate that returns #t if and only if the
datum is a legal argument to the function, and the datum.

Continued on next page.

18

Lab Assignment 2.1 continued...

5. We really don’t want to have to use type-check explicitly every time. Instead, we’d like to be able to
use a safe-sqrt procedure:

> (safe-sqrt ’hello)

#f

> (safe-sqrt 4)

2

Don’t write safe-sqrt! Instead, write a procedure make-safe that you can use this way:

> (define safe-sqrt (make-safe sqrt number?))

It should take two arguments, a function and a type-checking predicate, and return a new function that
returns #f if its argument doesn’t satisfy the predicate.

19

CS61A – Lab Assignment 2.2 Kurt Meinz
University of California, Berkeley Summer 2002

1. Try these in Scheme:

(define x (cons 4 5))

(car x)

(cdr x)

(define y (cons ’hello ’goodbye))

(define z (cons x y))

(car (cdr z))

(cdr (cdr z))

2. Predict the result of each of these before you try it:

(cdr (car z))

(car (cons 8 3))

(car z)

(car 3)

3. Enter these definitions into Scheme:

(define (make-rational num den)

(cons num den))

(define (numerator rat)

(car rat))

(define (denominator rat)

(cdr rat))

(define (*rat a b)

(make-rational (* (numerator a) (numerator b))

(* (denominator a) (denominator b))))

(define (print-rat rat)

(word (numerator rat) ’/ (denominator rat)))

4. Try this:

(print-rat (make-rational 2 3))

(print-rat (*rat (make-rational 2 3) (make-rational 1 4)))

5. Define a procedure +rat to add two rational numbers, in the same style as *rat above.

6. Now do exercises 2.2, 2.3, and 2.4 from SICP.

7. SICP ex. 2.18; this should take some thought, and you should make sure you get it right, but don’t get
stuck on it for the whole hour. Note: Your solution should reverse lists, not sentences! That is, you should
be using cons, car, and cdr, not first, sentence, etc.

20

CS61A – Lab Assignment 3.1 Kurt Meinz
University of California, Berkeley Summer 2002

1. SICP ex. 2.25 and 2.53; these should be quick and easy.

2. SICP ex. 2.55; explain your answer to your TA.

3. SICP ex. 2.27. This is the central exciting adventure of today’s lab! Think hard about it.

4. Each person individually make up a procedure named mystery that, given two lists as arguments, returns
the result of applying exactly two of cons, append, or list to mystery’s arguments, using no quoted values
or other procedure calls. Here are some examples of what is and is not fair game:

okay not okay

(define (mystery L1 L2) (define (mystery L1 L2)

(cons L1 (append L2 L1))) (cons L1 (cons L2 (cons L1 L2))))

(define (mystery L1 L2) (define (mystery L1 L2)

(list L1 (list L1 L1))) (cons L1 L2))

(define (mystery L1 L2) (define (mystery L1 L2)

(append (cons L2 L2) L1)) (append L1 (cons L1 ’(A B C))))

Type your mystery definition into a file, and have one of your partners load it into Scheme and try to guess
what it is by trying it out with various arguments.

After everyone has tried someone else’s procedure, decide with your partners which procedure was hardest
to guess and why, and what test cases were most and least helpful in revealing the definitions.

21

CS61A – Lab Assignment 3.2 Kurt Meinz
University of California, Berkeley Summer 2002

Start by reading SICP section 2.3.3 (pages 151–161).

1. SICP ex. 2.62.

2. The file ~cs61a/lib/bst.scm contains the binary search tree procedures from pages 156–157 of SICP.
Using adjoin-set, construct the trees shown on page 156.

3. SICP ex. 2.74.

22

CS61A – Lab Assignment 4.1 Kurt Meinz
University of California, Berkeley Summer 2002

1. Modify the person class given in the lecture notes for week 3 (it’s in the file demo2.scm in the
~cs61a/lectures/3.0 directory) to add a repeat method, which repeats the last thing said. Here’s an
example of responses to the repeat message.

> (define brian (instantiate person ’brian))

brian

> (ask brian ’repeat)

()

> (ask brian ’say ’(hello))

(hello)

> (ask brian ’repeat)

(hello)

> (ask brian ’greet)

(hello my name is brian)

> (ask brian ’repeat)

(hello my name is brian)

> (ask brian ’ask ’(close the door))

(would you please close the door)

> (ask brian ’repeat)

(would you please close the door)

2. This exercise introduces you to the usual procedure described on page 9 of “Object-oriented Programming
– Above-the-line View”. Read about usual there to prepare for lab. Suppose that we want to define a class
called double-talker to represent people that always say things twice, for example as in the following
dialog.

> (define mike (instantiate double-talker ’mike))

mike

> (ask mike ’say ’(hello))

(hello hello)

> (ask mike ’say ’(the sky is falling))

(the sky is falling the sky is falling)

Consider the following three definitions for the double-talker class. (They can be found online in the file
~cs61a/lib/double-talker.scm.)

(define-class (double-talker name)

(parent (person name))

(method (say stuff) (se (usual ’say stuff) (ask self ’repeat))))

(define-class (double-talker name)

(parent (person name))

(method (say stuff) (se stuff stuff)))

(define-class (double-talker name)

(parent (person name))

(method (say stuff) (usual ’say (se stuff stuff))))

Determine which of these definitions work as intended. Determine also for which messages the three versions
would respond differently.

23

CS61A – Lab Assignment 4.2 Kurt Meinz
University of California, Berkeley Summer 2002

1. Given below is a simplified version of the make-account procedure on page 223 of Abelson and Sussman.

(define (make-account balance)

(define (withdraw amount)

(set! balance (- balance amount)) balance)

(define (deposit amount)

(set! balance (+ balance amount)) balance)

(define (dispatch msg)

(cond

((eq? msg ’withdraw) withdraw)

((eq? msg ’deposit) deposit)))

dispatch)

Fill in the blank in the following code so that the result works exactly the same as the make-account
procedure above, that is, responds to the same messages and produces the same return values. The differences
between the two procedures are that the inside of make-account above is enclosed in the let below, and
the names of the parameter to make-account are different.

(define (make-account init-amount)
(let (underbar)

(define (withdraw amount)
(set! balance (- balance amount)) balance)

(define (deposit amount)
(set! balance (+ balance amount)) balance)

(define (dispatch msg)
(cond

((eq? msg ’withdraw) withdraw)
((eq? msg ’deposit) deposit)))

dispatch))

2. Modify either version of make-account so that, given the message balance, it returns the current account
balance, and given the message init-balance, it returns the amount with which the account was initially
created. For example:

> (define acc (make-account 100)
acc
> (acc ’balance)
100

Continued on next page...

24

Lab Assignment 4.2 continued:

3. Modify make-account so that, given the message transactions, it returns a list of all transactions made
since the account was opened. For example:

> (define acc (make-account 100))
acc
> ((acc ’withdraw) 50)
50
> ((acc ’deposit) 10)
60
> (acc ’transactions)
((withdraw 50) (deposit 10))

4. Given this definition:

(define (plus1 var)
(set! var (+ var 1))
var)

Show the result of computing

(plus1 5)

using the substitution model. That is, show the expression that results from substituting 5 for var in the
body of plus1, and then compute the value of the resulting expression. What is the actual result from
Scheme?

25

CS61A – Lab Assignment 5.1 Kurt Meinz
University of California, Berkeley Summer 2002

1. This lab activity consists of example programs for you to run in Scheme. Predict the result before you
try each example. If you don’t understand what Scheme actually does, ask for help! Don’t waste your time
by just typing this in without paying attention to the results.

(define (make-adder n) ((lambda (x)

(lambda (x) (+ x n))) (let ((a 3))

(+ x a)))

(make-adder 3) 5)

((make-adder 3) 5) (define k

(let ((a 3))

(define (f x) (make-adder 3)) (lambda (x) (+ x a))))

(f 5) (k 5)

(define g (make-adder 3)) (define m

(lambda (x)

(g 5) (let ((a 3))

(+ x a))))

(define (make-funny-adder n)

(lambda (x) (m 5)

(if (equal? x ’new)

(set! n (+ n 1)) (define p

(+ x n)))) (let ((a 3))

(lambda (x)

(define h (make-funny-adder 3)) (if (equal? x ’new)

(set! a (+ a 1))

(define j (make-funny-adder 7)) (+ x a)))))

(h 5) (p 5)

(h 5) (p 5)

(h ’new) (p ’new)

(h 5) (p 5)

(j 5) (define r

(lambda (x)

(let ((a 3)) (let ((a 3))

(+ 5 a)) (if (equal? x ’new)

(set! a (+ a 1))

(let ((a 3)) (+ x a)))))

(lambda (x) (+ x a)))

(r 5)

((let ((a 3))

(lambda (x) (+ x a))) (r 5)

5)

(r ’new)

Continued on next page...

26

Lab Assignment 5.1 continued:

(r 5)

(define s (define (ask obj msg . args)

(let ((a 3)) (apply (obj msg) args)))

(lambda (msg)

(cond ((equal? msg ’new) (ask s ’add 5)

(lambda ()

(set! a (+ a 1)))) (ask s ’new)

((equal? msg ’add)

(lambda (x) (+ x a))) (ask s ’add 5)

(else (error "huh?"))))))

(define x 5)

(s ’add)

(let ((x 10)

(s ’add 5) (f (lambda (y) (+ x y))))

(f 7))

((s ’add) 5)

(define x 5)

(s ’new)

((s ’add) 5)

((s ’new))

((s ’add) 5)

2. Exercise 3.12 of Abelson and Sussman.

3. Suppose that the following definitions have been provided.

(define x (cons 1 3)) (define y 2) A CS 61A student, intending to change the value of x to a pair with

car equal to 1 and cdr equal to 2, types the expression (set! (cdr x) y) instead of (set-cdr! x y) and
gets an error. Explain why.

4a. Provide the arguments for the two set-cdr! operations in the blanks below to produce the indicated
effect on list1 and list2. Do not create any new pairs; just rearrange the pointers to the existing ones.

> (define list1 (list (list ’a) ’b))

list1

> (define list2 (list (list ’x) ’y))

list2

> (set-cdr!)

okay

> (set-cdr!)

okay

> list1

((a x b) b)

> list2

((x b) y)

4b. After filling in the blanks in the code above and producing the specified effect on list1 and list2, draw
a box-and-pointer diagram that explains the effect of evaluating the expression (set-car! (cdr list1)
(cadr list2)) .

5. Exercises 3.13 and 3.14 in Abelson and Sussman.

27

CS61A – Lab Assignment 5.2 Kurt Meinz
University of California, Berkeley Summer 2002

In this lab there is no actual Scheme programming; you are to devise an algorithm in English to solve

The Dining Philosophers Problem

N philosophers are sitting around a round table for dinner. There is one chopstick between each pair of
philosophers, for a total of N chopsticks altogether. You need two chopsticks to eat. Philosophers spend
most of their time thinking, but every so often one gets hungry and wants to eat. A hungry philosopher
must obtain the two chopsticks on his or her left and right. If one or both of those chopsticks is already in
use, the philosopher must wait.

How can you use synchronization to solve that problem? You must come up with a solution that’s

1. correct (so you don’t have two philosophers using the same chopstick at the same time),

2. efficient (so you don’t restrict eating more than necessary—for example, you shouldn’t have only one
person allowed to eat at a time),

3. not deadlocked (don’t end up with each philosopher holding one chopstick), and

4. preferably fair (so they all get an equal chance to eat).

Be sure your solution works for both even and odd values of N.

28

CS61A – Lab Assignment 6.1 Kurt Meinz
University of California, Berkeley Summer 2002

1. What is the type of the value of (delay (+ 1 27))? What is the type of the value of (force (delay
(+ 1 27)))?

2. Evaluation of the expression

(stream-cdr (stream-cdr (cons-stream 1 ’(2 3))))

produces an error. Why?

3. Consider the following two procedures.

(define (enumerate-interval low high)

(if (> low high)

’()

(cons low (enumerate-interval (+ low 1) high))))

(define (stream-enumerate-interval low high)

(if (> low high)

the-empty-stream

(cons-stream low (stream-enumerate-interval (+ low 1) high))))

What’s the difference between the following two expressions?

(delay (enumerate-interval 1 3))

(stream-enumerate-interval 1 3)

4. An unsolved problem in number theory concerns the following algorithm for creating a sequence of positive
integers s1, s2, ...

Choose s1 to be some positive integer.

For n > 1,
if sn is odd, then sn+1 is 3 sn + 1;
if sn is even, then sn+1 is sn / 2.

No matter what starting value is chosen, the sequence always seems to end with the values 1, 4, 2, 1, 4, 2,
1, ... However, it is not known if this is always the case.

4a. Write a procedure num-seq that, given a positive integer n as argument, returns the stream of values
produced for n by the algorithm just given. For example, (num-seq 7) should return the stream representing
the sequence 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, ...

4b. Write a procedure seq-length that, given a stream produced by num-seq, returns the number of values
that occur in the sequence up to and including the first 1. For example, (seq-length (num-seq 7)) should
return 17. You should assume that there is a 1 somewhere in the sequence.

29

CS61A – Lab Assignment 6.2 Kurt Meinz
University of California, Berkeley Summer 2002

1. List all the procedures in the metacircular evaluator that call eval.

2. List all the procedures in the metacircular evaluator that call apply.

3. Explain why make-procedure does not call eval.

4. Abelson and Sussman, exercises 4.1, 4.2, 4.4, 4.5

30

CS61A – Lab Assignment 7.1 Kurt Meinz
University of California, Berkeley Summer 2002

Part A: Abelson and Sussman, exercises 4.27 and 4.29.

Part B: In this lab exercise you will become familiar with the Logo programming language, for which you’ll
be writing an interpreter in project 4.

To begin, type logo at the Unix shell prompt — not from Scheme! You should see something like this:

Welcome to Berkeley Logo version 3.4
?

The question mark is the Logo prompt, like the > in Scheme. (Later, in some of the examples below, you’ll
see a > prompt from Logo, while in the middle of defining a procedure)

1. Type each of the following instruction lines and note the results. (A few of them will give error messages.)
If you can’t make sense of a result, ask for help.

print 2 + 3

print 2 + 3

print sum 2 3

print (sum 2 3 4 5)

print sum 2 3 4 5

2 + 3

print "yesterday

print "julia"

print revolution

print [blue jay way]

show [eight days a week]

show first [golden slumbers]

print first bf [she loves you]

pr first first bf [yellow submarine]

to second :stuff

output first bf :stuff

end

second "something

print second "piggies

pr second [another girl]

pr first second [carry that weight]

pr second second [i dig a pony]

to pr2nd :thing

print first bf :thing

end

pr2nd [the 1 after 909]

print first pr2nd [hey jude]

repeat 5 [print [this boy]]

if 3 = 1 + 1 [print [the fool on the hill]]

print ifelse 2=1+1 ~

[second [your mother should know]] ~

[first "help]

print ifelse 3 = 1 + 2 ~

[strawberry fields forever] ~

[penny lane]

print ifelse 4 = 1 + 2 ~

["flying] ~

[[all you need is love]]

Continued on next page...

31

Lab Assignment 7.1 continued...

to greet :person

say [how are you,]

end

to say :saying

print sentence :saying :person

end

greet "ringo

show map "first [paperback writer]

show map [word first ? last ?] ~

[lucy in the sky with diamonds]

to who :sent

foreach [pete roger john keith] "describe

end

to describe :person

print se :person :sent

end

who [sells out]

print :bass

make "bass "paul

print :bass

print bass

to bass

output [johnny cymbal]

end

print bass

print :bass

print "bass

to countdown :num

if :num=0 [print "blastoff stop]

print :num

countdown :num-1

end

countdown 5

to downup :word

print :word

if emptyp bl :word [stop]

downup bl :word

print :word

end

downup "rain

;;;; The following stuff will work

;;;; only on an X workstation:

cs

repeat 4 [forward 100 rt 90]

cs

repeat 10 [repeat 5 [fd 150 rt 144] rt 36]

cs repeat 36 [repeat 4 [fd 100 rt 90]

setpc remainder pencolor+1 8

rt 10]

to tree :size

if :size < 3 [stop]

fd :size/2

lt 30 tree :size*3/4 rt 30

fd :size/3

rt 45 tree :size*2/3 lt 45

fd :size/6

bk :size

end

cs pu bk 100 pd ht tree 100

2. Devise an example that demonstrates that Logo uses dynamic scope rather than lexical scope. Your
example should involve the use of a variable that would have a different value if Logo used lexical scope.
Test your code with Berkeley Logo.

3. Explain the differences and similarities among the Logo operators " (double-quote), [] (square brackets),
and : (colon).

32

CS61A – Lab Assignment 7.2 Kurt Meinz
University of California, Berkeley Summer 2002

1. Abelson and Sussman, exercises 4.35 and 4.38.

2. In this exercise we learn what a continuation is. Suppose we have the following definition:

(define (square x cont)
(cont (* x x))

Here x is the number we want to square, and cont is the procedure to which we want to pass the result.
Now try these experiments:

> (square 5 (lambda (x) x))

> (square 5 (lambda (x) (+ x 2)))

> (square 5 (lambda (x) (square x (lambda (x) x))))

> (square 5 display)

> (define foo 3)
> (square 5 (lambda (x) (set! foo x)))
> foo

Don’t just type them in – make sure you understand why they work! The nondeterministic evaluator works
by evalutating every expression with two continuations, one used if the computation succeeds, and one used
if it fails.

(define (reciprocal x yes no)
(if (= x 0)

(no x)
(yes (/ 1 x))))

> (reciprocal 3 (lambda (x) x) (lambda (x) (se x ’(cannot reciprocate))))

> (reciprocal 0 (lambda (x) x) (lambda (x) (se x ’(cannot reciprocate))))

33

CS61A – Lab Assignment 8.1 Kurt Meinz
University of California, Berkeley Summer 2002

Abelson and Sussman, exercises 4.55 and 4.62:

4.55: Give simple queries that retrieve the following information from the data base:

All people supervised by Ben Bitdiddle;

The names and jobs of all people in the accounting division;

The names and addresses of all people who live in Slumerville.

4.62: Define rules to implement the last-pair operation of exercise 2.17, which returns a list containing
the last element of a nonempty list. Check your rules on queries such as

(last-pair (3) ?x)

(last-pair (1 2 3) ?x)

(last-pair (2 ?x) (3))

Do your rules work correctly on queries such as (last-pair ?x (3))?

For the lab exercises and the homework problems that involve writing queries or rules, test your solutions
using the query system. To run the query system and load in the sample data:

scm

(load "~cs61a/lib/query.scm")

(initialize-data-base microshaft-data-base)

(query-driver-loop)

You’re now in the query system’s interpreter. To add an assertion:

(assert! (foo bar))

To add a rule:

(assert! (rule (foo) (bar)))

Anything else is a query.

34

