
UNIVERSITY of CALIFORNIA at Berkeley
Department of Electrical Engineering and Computer Sciences

Computer Sciences Division

CS61A Kurt Meinz
Structure and Interpretation of Computer Programs Summer 2002

Programming Project 3: Adventure Game

This project is in two parts: Part I is due at 3:00am on Monday July 29 and Part II is due at 3:00am on
Monday, August 5. Please check the course website for updates and errata.

The project is to write an adventure game. We’ll provide most of the program. You will mostly make
modifications and some additions.

This project is designed to be done by two teams of 2 people each, working in parallel, then combining
your results into one finished product. You should divide your group of 4 into two subgroups, hereafter called
Subgroup A and Subgroup B. But you will combine your work to hand in a single report for your group.

The project begins with two exercises that everyone should do; these exercises do not require new pro-
gramming, but rather familiarize you with the overall structure of the program as we’ve provided it. After
that, each subgroup has separate exercises. There is one final exercise for everyone that requires the two
subgroups’ work to be combined. (Therefore, you should probably keep notes about all of the procedures that
you’ve modified during the project, so you can notice the ones that both subgroups modified independently.)

The first part is less work than the second part, so you may want to look at the entire project soon and
perhaps get an early start on the second part. For each part, your group should hand in one paper (not one
per subgroup) including a listing of your modified adv.scm program with the modifications highlighted, and
a transcript of the testing of your work. Indicate on the paper which people are in which subgroup.

Scoring: Each subgroup works on eight problems. Three of these (numbers 1, 2, and 8) are common to
the two subgroups; the others are separate. You hand in a single solution to each problem. Everyone in
the group gets the points awarded to the group for problems 1, 2, and 8; the members of each subgroup
get the points for their own problems 3 through 7. This means that your score for the project is mostly
based on your individual work but also relies partly on the other members of your group. For the first two
problems, you could get away with letting someone else in the group do the work, but you shouldn’t because
those problems are necessary to help you understand the structure of the entire project. Problem 8 requires
that both subgroups have already done their separate work, and meet together to understand each other’s
solutions, so probably nobody will get credit for it unless everyone has done their jobs.

This assignment is loosely based on an MIT homework assignment in their version of this course. (But
since this is Berkeley, it was changed it to be politically correct; instead of killing each other, the characters
go around eating gourmet food all the time.)

“In this laboratory assignment, we will be exploring two key ideas: the simulation of a world in which
objects are characterized by a set of state variables, and the use of message passing as a programming
technique for modularizing worlds in which objects interact.”

Object-Oriented Programming (OOP) is becoming an extremely popular methodology for any
application that involves interactions among computational entities. Examples:

• operating systems (processes as objects)

• window systems (windows as objects)

• distributed systems

• e-commerce systems (user processes as objects)

61

Getting Started: To start, copy the following five files into your directory:

∼cs61a/lib/obj.scm The object-oriented system

∼cs61a/lib/adv.scm The adventure game program

∼cs61a/lib/tables.scm An ADT you’ll need for part B4

∼cs61a/lib/adv-world.scm The specific people, places, and things

∼cs61a/lib/small-world.scm A smaller world you can use for debugging

To work on this project, you must load these files into Scheme in the correct order: obj.scm first,
then adv.scm and tables.scm when you’re using that, and finally the particular world you’re using,
either adv-world.scm or small-world.scm. The work you are asked to do refers to adv-world.scm;
small-world.scm is provided in case you’d prefer to debug some of your procedures in a smaller world
that may be less complicated to remember and also faster to load.

The reason the adventure game is divided into adv.scm (containing the definitions of the object classes)
and adv-world.scm (containing the specific instances of those objects in Berkeley) is that when you change
something in adv.scm you may need to reload the entire world in order for your changed version to take
effect. Having two files means that you don’t also have to reload the first batch of procedures.

In this program there are three classes:

• THING,

• PLACE, and

• PERSON

Here are some examples selected from adv-world.scm:

;;; construct the places in the world
(define Soda (instantiate place ’Soda))
(define BH-Office (instantiate place ’BH-Office))
(define 61A-Lab (instantiate place ’61A-Lab))
(define art-gallery (instantiate place ’art-gallery))
(define Evans (instantiate place ’Evans))
(define Sproul-Plaza (instantiate place ’Sproul-Plaza))
(define Telegraph-Ave (instantiate place ’Telegraph-Ave))
(define Noahs (instantiate place ’Noahs))
(define Intermezzo (instantiate place ’Intermezzo))
(define s-h (instantiate place ’sproul-hall))

;;; make some things and put them at places
(define bagel (instantiate thing ’bagel))
(ask Noahs ’appear bagel)

(define coffee (instantiate thing ’coffee))
(ask Intermezzo ’appear coffee)

;;; make some people
(define Brian (instantiate person ’Brian BH-Office))
(define hacker (instantiate person ’hacker 61A-Lab))

;;; connect places in the world

(can-go Soda ’up art-gallery)

62

(can-go art-gallery ’west BH-Office)
(can-go Soda ’south Evans)

Having constructed this world, we can now interact with it by sending messages to objects. Here is a
short example.

; We start with the hacker in the 61A lab.

> (ask 61A Lab ’exits)
(UP)
> (ask hacker ’go ’up)
HACKER moved from 61A LAB to SODA

We can put objects in the different places, and the people can then take the objects:

> (define Jolt (instantiate thing ’Jolt))
JOLT
> (ask Soda ’appear Jolt)
APPEARED
> (ask hacker ’take Jolt)
HACKER took JOLT
TAKEN

You can take objects away from other people, but the management is not responsible for the conse-
quences... (Too bad this is a fantasy game, and there aren’t really vending machines in Soda that stock
Jolt.)

PART I:

The first two exercises in this part should be done by everyone – that is, everyone should actually sit in
front of a terminal and do it! It’s okay to work in pairs as long as you all really know what’s going on by
the time you’re finished. (Nevertheless, you should only hand in one solution, that everyone agrees about.)
The remaining exercises have numbers like “A3” which means exercise 3 for subgroup A.

After you’ve done the work in separate subgroups, you should meet together to make sure that everyone
understands what the other people did, because the second week’s work depends on all of the first week’s
work. You can do the explaining while you’re merging the two sets of modifications into one adv.scm file to
hand in.

1. Create a new person to represent yourself. Put yourself in a new place called Dormitory (or wherever
you live) and connect it to campus so that you can get there from here. Create a place called Shin-Shin,
north of Soda. (It’s actually on Solano Avenue.) Put a thing called Potstickers there. Then give the
necessary commands to move your character to Shin-Shin, take the Potstickers, then move yourself to
where Brian is, put down the Potstickers, and have Brian take them. Then go back to the lab and get
back to work. (There is no truth to the rumor that you’ll get an A in the course for doing this in real
life!) All this is just to ensure that you know how to speak the language of the adventure program.

List all the messages that are sent during this episode. It’s a good idea to see if you can work
this out in your head, at least for some of the actions that take place, but you can also trace the ask
procedure to get a complete list. You don’t have to hand in this listing of messages. (Do hand in a
transcript of the episode without the tracing.) The point is that you should have a good sense of the
ways in which the different objects send messages back and forth as they do their work.

[Tip: we have provided a move-loop procedure that you may find useful as an aid in debugging your
work. You can use it to move a person repeatedly.]

2. It is very important that you think about and understand the kinds of objects involved in the adventure
game. Please answer the following questions:

63

2A. What kind of thing is the value of variable Brian?

Hint: What is returned by scheme in the following situation: You type:

> Brian

2B. List all the messages that a place understands. (You might want to maintain such a list for your own
use, for every type of object, to help in the debugging effort.)

2C. We have been defining a variable to hold each object in our world. For example, we defined bagel by
saying:

(define bagel (instantiate thing ’bagel))

This is just for convenience. Every object does not have to have a top-level definition. Every object
does have to be constructed and connected to the world. For instance, suppose we did this:

> (can-go Telegraph-Ave ’east (instantiate place ’Peoples-Park))
;;; assume BRIAN is at Telegraph

> (ask Brian ’go ’east)

What is returned by the following expressions and WHY?

> (ask Brian ’place)
> (let ((where (ask Brian ’place)))

(ask where ’name))
> (ask Peoples-park ’appear bagel)

2D. The implication of all this is that there can be multiple names for objects. One name is the value of
the object’s internal name variable. In addition, we can define a variable at the top-level to refer to an
object. Moreover, one object can have a private name for another object. For example, Brian has a
variable place which is currently bound to the object that represents People’s Park. Some examples
to think about:

> (eq? (ask Telegraph-Ave ’look-in ’east) (ask Brian ’place))

> (eq? (ask Brian ’place) ’Peoples-Park)

> (eq? (ask (ask Brian ’place) ’name) ’Peoples-Park)

OK. Suppose we type the following into scheme:

> (define computer (instantiate thing ’Durer))

Which of the following is correct? Why?

(ask 61a-lab ’appear computer) or

(ask 61a-lab ’appear Durer) or

(ask 61a-lab ’appear ’Durer)

What is returned by (computer ’name) ? Why?

2E. We have provided a definition of the thing class that does not use the object-oriented programming
syntax described in the handout. Translate it into the new notation.

2F. Sometimes it’s inconvenient to debug an object interactively because its methods return objects and
we want to see the names of the objects. You can create auxiliary procedures for interactive use (as
opposed to use inside object methods) that provide the desired information in printable form. For
example:

(define (name obj) (ask obj ’name))

64

(define (inventory obj)
(if (person? obj)

(map name (ask obj ’possessions))
(map name (ask obj ’things))))

Write a procedure whereis that takes a person as its argument and returns the name of the place
where that person is.

Write a procedure owner that takes a thing as its argument and returns the name of the person who
owns it. (Make sure it works for things that aren’t owned by anyone.)

Procedures like this can be very helpful in debugging the later parts of the project, so feel free to write
more of them for your own use.

Now it’s time for you to make your first modifications to the adventure game. This is where you split
into subgroups.

PART I – SUBGROUP A:

A3. You will notice that whenever a person goes to a new place, the place gets an ’enter message. In
addition, the place the person previously inhabited gets an ’exit message. When the place gets the
message, it calls each procedure on its list of entry-procedures or exit-procedures as appropriate.
Places have the following methods defined for manipulating these lists of procedures: add-entry-proc,
add-exit-proc, remove-entry-proc, remove-exit-proc, clear-all-proc. You can read their def-
initions in the code.

Sproul Hall has a particularly obnoxious exit procedure attached to it. Fix sproul-hall-exit so that
it counts how many times it gets called, and stops being obnoxious after the third time.

Remember that the exit-procedures list contains procedures, not names of procedures! It’s not good
enough to redefine sproul-hall-exit , since Sproul Hall’s list of exit procedures still contains the old
procedure. The best thing to do is just to load adv-world.scm again, which will define a new sproul
hall and add the new exit procedure.

A4. We’ve provided people with the ability to say something using the messages ’talk and ’set-talk .
As you may have noticed, some people around this campus start talking whenever anyone walks by.
We want to simulate this behavior. In any such interaction there are two people involved: the one who
was already at the place (hereafter called the talker) and the one who is just entering the place (the
listener). We have already provided a mechanism so that the listener sends an enter message to the
place when entering. Also, each person is ready to accept a notice message, meaning that the person
should notice that someone new has come. The talker should get a notice message, and will then talk,
because we’ve made a person’s notice method send itself a talk message. (Later we’ll see that some
special kinds of people have different notice methods.)

Your job is to modify the enter method for places, so that in addition to what that method already
does, it sends a notice message to each person in that place other than the person who is entering.
In order to make this work, the place has to know who sent the enter message. Modify that method
so that it takes the sender as an argument, just as the appear method does. (Make sure that you find
everywhere in the program where an enter message is sent!)

Test your implementation with the following:

(define singer (instantiate person ’rick sproul-plaza))

(ask singer ’set-talk ‘‘My funny valentine, sweet comic valentine")

(define preacher (instantiate person ’preacher sproul-plaza))

(ask preacher ’set-talk ‘‘Praise the Lord")

65

(define street-person (instantiate person ’harry telegraph-ave))

(ask street-person ’set-talk ‘‘Brother, can you spare a buck")

YOU MUST INCLUDE A TRANSCRIPT IN WHICH YOUR CHARACTER WALKS
AROUND AND TRIGGERS THESE MESSAGES.

End of Part I for Subgroup A

PART I, SUBGROUP B:

B3. Define a method take-all for people. If given that message, a person should take all the things at
the current location that are not already owned by someone.

B4A. It’s unrealistic that anyone can take anything from anyone. We want to give our characters a strength,
and then one person can take something from another only if the first has greater strength than the
second.

However, we aren’t going to clutter up the person class by adding a local strength variable. That’s
because we can anticipate wanting to add lots more attributes as we develop the program further.
People can have charisma or wisdom ; things can be food or not; places can be locked or not.
Therefore, you will create a class called basic-object that keeps a local variable called properties
containing an attribute-value table like the one that we used with get and put in 2.3.3. However, get
and put refer to a single, fixed table for all operations; in this situation we need a separate table for
every object. The file tables.scm contains an implementation of the table Abstract Data Type:

constructor: (make-table) returns a new, empty table.

mutator: (insert! key value table) adds a new key-value pair to a table.

selector: (lookup key table) returns the corresponding value, or #f if the key is not in the table.

You’ll learn how tables are implemented in 3.3.3 (pp. 214-215). For now, just take them as primitive.

You’ll modify the person, place and thing classes so that they will inherit from basic-object. This
object will accept a message put so that

> (ask Brian ’put ’strength 100)

does the right thing. Also, the basic-object should treat any message not otherwise recognized as a
request for the attribute of that name, so

> (ask Brian ’strength)
100

should work without having to write an explicit strength method in the class definition.

Don’t forget that the property list mechanism in 3.3.3 returns #f if you ask for a property that isn’t
in the list. This means that

> (ask Brian ’charisma)

should never give an error message, even if we haven’t put that property in that object. This is
important for true-or-false properties, which will automatically be false (but not an error) unless we
explicitly put a true value for them.

Give people some reasonable (same for everyone) initial strength. Next week they’ll be able to get
stronger by eating.

B4B. You’ll notice that the type predicate person? checks to see if the type of the argument is a member
of the list ’(person place thief). This means that the person? procedure has to keep a list of all the
classes that inherit from person , which is a pain if we make a new subclass.

We’ll take advantage of the property list to implement a better system for type checking. If we add
a method named person? to the person class, and have it always return #t , then any object that’s

66

a type of person will automatically inherit this method. Objects that don’t inherit from person won’t
find a person? method and won’t find an entry for person? in their property table, so they’ll return
#f .

Similarly, places should have a place? method, and things a thing? method.

Add these type methods and change the implementation of the type predicate procedures to this new
implementation.

End of Part I, Subgroup B

PART II:

This part of the project includes three exercises for each subgroup, followed by a final exercise that
requires the two groups’ work to be combined. You will have to create a version of adv.scm that has
both subgroups’ changes. This may take some thinking! If both subgroups modify the same method in
the same object class, you’ll have to write a version of the method that incorporates both modifications.

PART II, SUBGROUP A:

A5. The way we’re having people take food from restaurants is unrealistic in several ways. Our overall goal
this week is to fix that. As a first step, you are going to create a food class. We will give things that
are food two properties, an edible? property and a calories property. edible? will have the value
#t if the object is a food. If a person eats some food, the food’s calories are added to the person’s
strength .

(Remember that the edible? property will automatically be false for objects other than food, because
of the way properties were implemented in question B4. You don’t have to go around telling all the
other stuff not to be edible explicitly.)

Write a definition of the food class that uses thing as the parent class. It should return #t when you
send it an edible? message, and it should correctly respond to a calories message.

Replace the procedure named edible? in the original adv.scm with a new version that takes advantage
of the mechanism you’ve created, instead of relying on a built-in list of types of food.

Now that you have the food class, invent some child classes for particular kinds of food. For example,
make a bagel class that inherits from food . Give the bagel class a class-variable called name whose
value is the word bagel. (We’ll need this later when we invent restaurant objects.)

Make an eat method for people. Your eat method should look at your possessions and filter for all
the ones that are edible. It should then add the calorie value of the foods to your strength. Then it
should make the foods disappear (no longer be your possessions and no longer be at your location).

A6A. Eventually, we are going to invent restaurant objects. People will interact with the restaurants by
buying food there. First we have to make it possible for people to buy stuff. Give person objects a
money property, which is a number, saying how many dollars they have. Note that money is not an
object. We implement it as a number because, unlike the case of objects such as chairs and potstickers,
a person needs to be able to spend some money without giving up all of it. In principle we could have
objects like quarter and dollar-bill , but this would make the change-making process complicated
for no good reason.

Now, in order to get money, people will need to go to the bank. Create a new place, a bank. (That
is, bank is a subclass of place. The bank contains a procedure make-account which returns a bank-
account object, and contains a method withdraw for withdrawing money.

The method withdraw takes two arguments, the person who wants to withdraw money from their
account, and the amount. The withdraw method should check that a person has that amount in their
account, and if so, it returns a number corresponding the the amount of the withdrawal or reports #f.

Now, change person so that on instantiation, they have a bank account containing $100, (but their
money variable is 0.) (We should really start people with no money, and invent jobs and so on, but we
won’t.)

67

Create a method for people, pay-money , which takes a number as argument and returns true or false
depending on whether the person had enough money, and updates the person’s money value.

Now, create a method get-money which only works at a bank. It should check that the bank completed
the withdrawal, and if so, it should update the person’s money value appropriately.

A6B. Another problem with the adventure game is that Noah’s only has one bagel. Once someone has taken
that bagel, they’re out of business.

To fix this, we’re going to invent a new kind of place, called a restaurant . (That is, restaurant is a
subclass of place .) Each restaurant serves only one kind of food. (This is a simplification, of course,
and it’s easy to see how we might extend the project to allow lists of kinds of food.) When a restaurant
is instantiated, it should have two extra arguments, besides the ones that all places have: the class of
food objects that this restaurant sells, and the price of one item of this type:

> (define-class (bagel) (parent (food ...)) ...)
> (define Noahs (instantiate restaurant ’Noahs bagel 0.50))

Notice that the argument to the restaurant is a class , not a particular bagel (instance).

Restaurants should have two methods. The menu method returns a list containing the name and price
of the food that the restaurant sells. The sell method takes two arguments, the person who wants
to buy something and the name of the food that the person wants. The sell method must first check
that the restaurant actually sells the right kind of food. If so, it should ask the buyer to pay-money
in the appropriate amount. If that succeeds, the method should instantiate the food class and return
the new food object. The method should return #f if the person can’t buy the food.

A7. Now we need a buy method for people. It should take as argument the name of the food we want to
buy: (ask Brian ’buy ’bagel) . The method must send a sell message to the restaurant. If this
succeeds (that is, if the value returned from the sell method is an object rather than #f) the new
food should be added to the person’s possessions.

Subgroup A skip to question 8 below

PART II, SUBGROUP B:

adv.scm includes a definition of the class thief, a subclass of person. A thief is a character who tries
to steal food from other people. Of course, Berkeley can not tolerate this behavior for long. Your job
is to define a police class; police objects catch thieves and send them directly to jail. To do this you
will need to understand how theives work.

Since a thief is a kind of person, whenever another person enters the place where the thief is, the thief
gets a notice message from the place. When the thief notices a new person, he does one of two things,
depending on the state of his internal behavior variable. If this variable is set to steal , the thief
looks around to see if there is any food at the place. If there is food, the thief takes the food from its
current possessor and sets his behavior to run . When the thief’s behavior is run , he moves to a new
random place whenever he notice s someone entering his current location. The run behavior makes
it hard to catch a thief.

Notice that a thief object delegates many messages to its person object.

B5A. To help the police do their work, you will need to create a place called jail. Jail has no exits. Moreover,
you will need to create a method for persons and thieves called go-directly-to. go-directly-to
does not require that the new-place be adjacent to the current-place. So by calling (ask thief
’go-directly-to jail) the police can send the thief to jail no matter where the thief currently
is located, assuming the variable thief is bound to the thief being apprehended.

B5B. Lucky for us, at least in the adventure world, we can stop thieves from stealing bicycles. To do this,
we first need to invent a class bicycle. Instantiate one, and add it to yourself. Later, we’ll update
some other code so that bicycles can’t be taken.

68

B6. Your job is to define the police class. A police officer is to have the following behavior:

The police officer stays at one location. When the officer notices a new person entering the location,
the officer checks to see if that person is a thief. If the person is a thief the officer says “Crime Does
Not Pay,” then takes away all the thief’s possessions and sends the thief directly to jail. If the person
is not a thief, but has a bicycle, the officer says “No bike riding on Campus”. (At this point, the
policeman doesn’t DO anything else, since we haven’t implemented riding a bicycle yet, but it’ll have
to do.)

Give thieves and police default strengths. Thieves should start out stronger than persons, but police
should be stronger than thieves. Of course, if you eat lots you should be able to build up enough
strength (mass?) to take food away from a thief. (Only a character with a lot of chutzpah would
take food away from the police.)

Please test your code and turn in a transcript that shows the thief stealing your food, you chasing the
thief and the police catching the thief. In case you haven’t noticed, we’ve put a thief in Sproul Plaza.
Then, turn in a transcript showing that policeman telling you not to ride a bicycle on campus.

B7. Now we want to reorganize take so that it looks to see who previously possesses the desired object. If
its possessor is ’no-one , go ahead and take it as always. Otherwise, invoke

(ask (ask thing ’possessor) ’may-take? receiver thing)

That is, a person must be able to process a message may-take? by calling a procedure that accepts
two additional arguments: the person who wants to take the thing, and the thing itself. The associated
method should return #F if the person may not take the thing, or the thing itself if the person may
take it.

Note the flurry of message-passing going on here. We send a message to the taker. It sends a message
to the thing, which sends messages to two people to find out their strengths.

Now, ensure that bikes cannot be taken by thieves.

End of Part II, Subgroup B (but both subgroups do question 8 below)

8. Combine the two subgroups’ work. For example, both groups have created new methods for the person
class. Both groups have done work involving strengths of kinds of people; make sure they work together.

Now make it so that when a police officer asks to buy some food the restaurant doesn’t charge him
any money. (This makes the game more realistic...)

******** OPTIONAL **********

As you can imagine, this is a truly open-ended project. If you have the time and inclination, you can populate
your world with new kinds of people (e.g., punk-rockers), places (Gilman-St), and especially things (magic
wands, beer, gold pieces, cars looking for parking places...).

When your instructor took this class, he and his partner added inventories, hit points, weapons, and
a statistical combat simulator. In addition, we used the picture language of project 2 to add a graphical
interface so that locations would draw with all of the people inside of them and people would draw with
graphical depictions of the objects in their possession.

Students who are looking for a challenge are invited to make similar improvements to the adventure
game. Extra credit may be given for particularly novel and interesting additions, commensurate with the
difficulty of the work done.

For your enjoyment we have developed a procedure that creates a labyrinth (a maze) that you can explore.
To do so, load the file ∼cs61a/lib/labyrinth.scm.

Legend has it that there is a vast series of rooms underneath Sproul Plaza. These rooms are littered with
food of bygone days and quite a few theives. You can find the secret passage down in Sproul Plaza.

69

[Note: labyrinth.scm may need some modification to work with the procedures you developed in part
two of the project.]

You may want to modify fancy-move-loop so that you can look around in nearby rooms before entering
so that you can avoid thieves. You might also want your character to maintain a list of rooms visited on its
property list so you can find your way back to the earth’s surface.

70

