
CS 61A A&S Section 3.0

Object-Oriented Programming — Above the line view

This document should be read before Section 3.1 of the text. A second document, “Object-Oriented
Programming — Below the line view,” should be read after Section 3.1 and perhaps after Section
3.2; the idea is that you first learn how to use the object-oriented programming facility, then you
learn how it’s implemented.

Object-oriented programming is a metaphor. It expresses the idea of several independent agents
inside the computer, instead of a single process manipulating various data. For example, the next
programming project is an adventure game, in which several people, places, and things interact.
We want to be able to say things like “Ask Fred to pick up the potstickers.” (Fred is a person
object, and the potstickers are a thing object.)

Programmers who use the object metaphor have a special vocabulary to describe the components
of an object-oriented programming (OOP) system. In the example just above, “Fred” is called an
instance and the general category “person” is called a class. Programming languages that support
OOP let the programmer talk directly in this vocabulary; for example, every OOP language has a
“define class” command in some form. For this course, we have provided an extension to Scheme
that supports OOP in the style of other OOP languages. Later we shall see how these new features
are implemented using Scheme capabilities that you already understand. OOP is not magic; it’s a
way of thinking and speaking about the structure of a program.

When we talk about a “metaphor,” in technical terms we mean that we are providing an abstraction.
The above-the-line view is the one about independent agents. Below the line there are three crucial
technical ideas: message-passing (section 2.3), local state (section 3.1), and inheritance (explained
below). This document will explain how these ideas look to the OOP programmer; later we shall
see how they are implemented.

A simpler version of this system and of these notes came from MIT; this version was developed at
Berkeley by Matt Wright.

In order to use the OOP system, you must load the file ~cs61a/lib/obj.scm into Scheme.

Message Passing

The way to get things to happen in an object oriented system is to send messages to objects asking
them to do something. You already know about message passing; we used this technique in Section
2.3 to implement generic operators using “smart” data. For example, in Section 3.1 much of the
discussion will be about bank account objects. Each account has a balance (how much money is in
it); you can send messages to a particular account to deposit or withdraw money. The book’s version
shows how these objects can be created using ordinary Scheme notation, but now we’ll use OOP
vocabulary to do the same thing. Let’s say we have two objects Matt-Account and Brian-Account
of the bank account class. (You can’t actually type this into Scheme yet; the example assumes that
we’ve already created these objects.)

> (ask Matt-Account ’balance)
1000

159



> (ask Brian-Account ’balance)
10000
> (ask Matt-Account ’deposit 100)
1100
> (ask Brian-Account ’withdraw 200)
9800
> (ask Matt-Account ’balance)
1100
> (ask Brian-Account ’withdraw 200)
9600

We use the procedure ask to send a message to an object. In the above example we assumed that
bank account objects knew about three messages: balance, deposit, and withdraw. Notice that
some messages require additional information; when we asked for the balance, that was enough,
but when we ask an account to withdraw or deposit we needed to specify the amount also.

The metaphor is that an object “knows how” to do certain things. These things are called methods.
Whenever you send a message to an object, the object carries out the method it associates with
that message.

Local State

Notice that in the above example, we repeatedly said

(ask Brian-Account ’withdraw 200)

and got a different answer each time. It seemed perfectly natural, because that’s how bank accounts
work in real life. However, until now we’ve been using the functional programming paradigm, in
which, by definition, calling the same function twice with the same arguments must give the same
result.

In the OOP paradigm, the objects have state. That is, they have some knowledge about what has
happened to them in the past. In this example, a bank account has a balance, which changes when
you deposit or withdraw some money. Furthermore, each account has its own balance. In OOP
jargon we say that balance is a local state variable.

You already know what a local variable is: a procedure’s formal parameter is one. When you say

(define (square x) (* x x))

the variable x is local to the square procedure. If you had another procedure (cube x), its variable
x would be entirely separate from that of square. Likewise, the balance of Matt-Account is kept
separate from that of Brian-Account.

On the other hand, every time you invoke square, you supply a new value for x; there is no
memory of the value x had last time around. A state variable is one whose value survives between
invocations. After you deposit some money to Matt-Account, the balance variable’s new value is
remembered the next time you access the account.

To create objects in this system you instantiate a class. For example, Matt-Account and

160



Brian-Account are instances of the account class:

> (define Matt-Account (instantiate account 1000))
Matt-Account
> (define Brian-Account (instantiate account 10000))
Brian-Account

The instantiate function takes a class as its first argument and returns a new object of that class.
Instantiate may require additional arguments depending on the particular class: in this example
you specify an account’s initial balance when you create it.

Most of the code in an object-oriented program consists of definitions of various classes. Here is
the account class:

(define-class (account balance)
(method (deposit amount)

(set! balance (+ amount balance))
balance)

(method (withdraw amount)
(if (< balance amount)

"Insufficient funds"
(begin
(set! balance (- balance amount))
balance))) )

There’s a lot to say about this code. First of all, there’s a new special form, define-class. The
syntax of define-class is analogous to that of define. Where you would expect to see the name of
the procedure you’re defining comes the name of the class you’re defining. In place of the parameters
to a procedure come the initialization variables of the class: these are local state variables whose
initial values must be given as the extra arguments to instantiate. The body of a class consists
of any number of clauses; in this example there is only one kind of clause, the method clause, but
we’ll learn about others later. The order in which clauses appear within a define-class doesn’t
matter.

The syntax for defining methods was also chosen to resemble that for defining procedures. The
“name” of the method is actually the message used to access the method. The parameters to the
method correspond to extra arguments to the ask procedure. For example, when we said

(ask Matt-Account ’deposit 100)

we associated the argument 100 with the parameter amount.

You’re probably wondering where we defined the balance method. For each local state variable in
a class, a corresponding method of the same name is defined automatically. These methods have
no arguments, and they just return the current value of the variable with that name.

This example also introduced two new special forms that are not unique to the object system. The
first is set!, whose job it is to change the value of a state variable. Its first argument is unevaluated;
it is the name of the variable whose value you wish to change. The second argument is evaluated;
the value of this expression becomes the new value of the variable. The return value of set! is
undefined.

161



This looks a lot like the kind of define without parentheses around the first argument, but the
meaning is different. Define creates a new variable, while set! changes the value of an existing
variable.

The name set! has an exclamation point in its name because of a Scheme convention for procedures
that modify something. (This is just a convention, like the convention about question marks in the
names of predicate functions, not a firm rule.) The reason we haven’t come across this convention
before is that functional programming rules out the whole idea of modifying things; there is no
memory of past history in a functional program.

The other Scheme primitive special form in this example is begin, which evaluates all of its ar-
gument expressions in order and returns the value of the last one. Until now, in every procedure
we’ve evaluated only one expression, to provide the return value of that procedure. It’s still the
case that a procedure can only return one value. Now, though, we sometimes want to evaluate an
expression for what it does instead of what it returns, e.g. changing the value of a variable. The
call to begin indicates that the (set! amount (- amount balance)) and the balance together
form a single argument to if. You’ll learn more about set! and begin in Chapter 3.

Inheritance

Imagine using OOP in a complicated program with many different kinds of objects. Very often,
there will be a few classes that are almost the same. For example, think about a window system.
There might be different kinds of windows (text windows, graphics windows, and so on) but all
of them will have certain methods in common, e.g., the method to move a window to a different
position on the screen. We don’t want to have to reprogram the same method in several classes.
Instead, we create a more general class (such as “window”) that knows about these general methods;
the specific classes (like “text window”) inherit from the general class. In effect, the definition of
the general class is included in that of the more specific class.

Let’s say we want to create a checking account class. Checking accounts are just like regular bank
accounts, except that you can write checks as well as withdrawing money in person. But you’re
charged ten cents every time you write a check.

> (define Hal-Account (instantiate checking-account 1000))
Hal-Account
> (ask Hal-Account ’balance)
1000
> (ask Hal-Account ’deposit 100)
1100
> (ask Hal-Account ’withdraw 50)
1050
> (ask Hal-Account ’write-check 30)
1019.9

One way to do this would be to duplicate all of the code for regular accounts in the definition of the
checking-account. This isn’t so great, though; if we want to add a new feature to the account
class we would need to remember to add it to the checking-account class as well.

162



It is very common in object-oriented programming that one class will be a specialization of another:
the new class will have all the methods of the old, plus some extras, just as in this bank account
example. To describe this situation we use the metaphor of a family of object classes. The original
class is the parent and the specialized version is the child class. We say that the child inherits the
methods of the parent. (The names subclass for child and superclass for parent are also sometimes
used.)

Here’s how we create a subclass of the account class:

(define-class (checking-account init-balance)
(parent (account init-balance))
(method (write-check amount)

(ask self ’withdraw (+ amount 0.10)) ))

This example introduces the parent clause in define-class. In this case, the parent is the account
class. Whenever we send a message to a checking-account object, where does the corresponding
method come from? If a method of that name is defined in the checking-account class, it is used;
otherwise, the OOP system looks for a method in the parent account class. (If that class also had
a parent, we might end up inheriting a method from that twice-removed class, and so on.)

Notice also that the write-check method refers to a variable called self. Each object has a local
state variable self whose value is the object itself. (Notice that you might write a method within
the definition of a class C thinking that self will always be an instance of C, but in fact self might
turn out to be an instance of another class that has C as its parent.)

Methods defined in a certain class only have access to the local state variables defined in the
same class. For example, a method defined in the checking-account class can’t refer to the
balance variable defined in the account class; likewise, a method in the account class can’t refer
to the init-balance variable. This rule corresponds to the usual Scheme rule about scope of
variables: each variable is only available within the block in which it’s defined. (Not every OOP
implementation works like this, by the way.)

If a method in the checking-account class needs to refer to the balance variable defined in its
parent class, the method could say

(ask self ’balance)

This invocation of ask sends a message to the checking-account object, but because there is no
balance method defined within the checking-account class itself, the method that’s inherited
from the account class is used.

We used the name init-balance for the new class’s initialization variable, rather than just
balance, because we want that name to mean the variable belonging to the parent class. Since
the OOP system automatically creates a method named after every local variable in the class, if
we called this variable balance then we couldn’t use a balance message to get at the parent’s
balance state variable. (It is the parent, after all, in which the account’s balance is changed for
each transaction.)

We have now described the three most important parts of the OOP system: message passing, local
state, and inheritance. In the rest of this document we introduce some “bells and whistles”—
additional features that make the notation more flexible, but don’t really involve major new ideas.

163



Three Kinds of Local State Variables

So far the only local state variables we’ve seen have been instantiation variables, whose values are
given as arguments when an object is created. Sometimes we’d like each instance to have a local
state variable, but the initial value is the same for every object in the class, so we don’t want to have
to mention it at each instantiation. To achieve this purpose, we’ll use a new kind of define-class
clause, called instance-vars:

(define-class (checking-account init-balance)
(parent (account init-balance))
(instance-vars (check-fee 0.10))
(method (write-check amount)

(ask self ’withdraw (+ amount check-fee)))
(method (set-fee! fee)

(set! check-fee fee)) )

We’ve set things up so that every new checking account will have a ten-cent fee for each check. It’s
possible to change the fee for any given account, but we don’t have to say anything if we want to
stick with the ten cent value.

Instantiation variables are also instance variables; that is, every instance has its own private value
for them. The only difference is in the notation—for instantiation variables you give a value when
you call instantiate, but for other instance variables you give the value in the class definition.

The third kind of local state variable is a class variable. Unlike the case of instance variables, there
is only one value for a class variable for the entire class. Every instance of the class shares this
value. For example, let’s say we want to have a class of workers that are all working on the same
project. That is to say, whenever any of them works, the total amount of work done is increased.
On the other hand, each worker gets hungry separately as he or she works. Therefore, there is a
common work-done variable for the class, and a separate hunger variable for each instance.

(define-class (worker)
(instance-vars (hunger 0))
(class-vars (work-done 0))
(method (work)

(set! hunger (1+ hunger))
(set! work-done (1+ work-done))
’whistle-while-you-work ))

> (define brian (instantiate worker))
BRIAN
> (define matt (instantiate worker))
MATT
> (ask matt ’work)
WHISTLE-WHILE-YOU-WORK
> (ask matt ’work)
WHISTLE-WHILE-YOU-WORK
> (ask matt ’hunger)
2

164



> (ask matt ’work-done)
2
> (ask brian ’work)
WHISTLE-WHILE-YOU-WORK
> (ask brian ’hunger)
1
> (ask brian ’work-done)
3
> (ask worker ’work-done)
3

As you can see, asking any worker object to work increments the work-done variable. In contrast,
each worker has its own hunger instance variable, so that when Brian works, Matt doesn’t get
hungry.

You can ask any instance the value of a class variable, or you can ask the class itself. This is an
exception to the usual rule that messages must be sent to instances, not to classes.

Initialization

Sometimes we want every new instance of some class to carry out some initial activity as soon as
it’s created. For example, let’s say we want to maintain a list of all the worker objects. We’ll create
a class variable called all-workers to hold the list, but we also have to make sure that each newly
created instance adds itself to the list. We do this with an initialize clause:

(define-class (worker)
(instance-vars (hunger 0))
(class-vars (all-workers ’())

(work-done 0))
(initialize (set! all-workers (cons self all-workers)))
(method (work)

(set! hunger (1+ hunger))
(set! work-done (1+ work-done))
’whistle-while-you-work ))

The body of the initialize clause is evaluated when the object is instantiated. (By the way, don’t
get confused about those two long words that both start with “I.” Instantiation is the process of
creating an instance (that is, a particular object) of a class. Initialization is some optional, class-
specific activity that the newly instantiated object might perform.)

If a class and its parent class both have initialize clauses, the parent’s clause is evaluated first.
This might be important if the child’s initialization refers to local state that is maintained by
methods in the parent class.

Classes That Recognize Any Message

Suppose we want to create a class of objects that return the value of the previous message they

165



received whenever you send them a new message. Obviously, each such object needs an instance
variable in which it will remember the previous message. The hard part is that we want objects of
this class to accept any message, not just a few specific messages. Here’s how:

(define-class (echo-previous)
(instance-vars (previous-message ’first-time))
(default-method

(let ((result previous-message))
(set! previous-message message)
result)))

We used a default-method clause; the body of a default-method clause gets evaluated if an
object receives a message for which it has no method. (In this case, the echo-previous object
doesn’t have any regular methods, so the default-method code is executed for any message.)

Inside the body of the default-method clause, the variable message is bound to the message that
was received and the variable args is bound to a list of any additional arguments to ask.

Using a Parent’s Method Explicitly

In the example about checking accounts earlier, we said

(define-class (checking-account init-balance)
(parent (account init-balance))
(method (write-check amount)

(ask self ’withdraw (+ amount 0.10)) ))

Don’t forget how this works: Because the checking-account class has a parent, whatever messages
it doesn’t understand are processed in the same way that the parent (account) class would handle
them. In particular, account objects have deposit and withdraw methods.

Although a checking-account object asks itself to withdraw some money, we really intend that
this message be handled by a method defined within the parent account class. There is no problem
here because the checking-account class itself does not have a withdraw method.

Imagine that we want to define a class with a method of the same name as a method in its parent
class. Also, we want the child’s method to invoke the parent’s method of the same name. For
example, we’ll define a TA class that is a specialization of the worker class. The only difference is
that when you ask a TA to work, he or she returns the sentence “Let me help you with that box
and pointer diagram” after invoking the work method defined in the worker class.

We can’t just say (ask self ’work), because that will refer to the method defined in the child
class. That is, suppose we say:

(define-class (TA)
(parent (worker))
(method (work)

(ask self ’work) ;; WRONG!
’(Let me help you with that box and pointer diagram))

(method (grade-exam) ’A+) )

166



When we ask a TA to work, we are hoping to get the result of asking a worker to work (increasing
hunger, increasing work done) but return a different sentence. But what actually happens is an
infinite recursion. Since self refers to the TA, and the TA does have its own work method, that’s
what gets used. (In the earlier example with checking accounts, ask self works because the
checking account does not have its own withdraw method.)

Instead we need a way to access the method defined in the parent (worker) class. We can accomplish
this with usual:

(define-class (TA)
(parent (worker))
(method (work)

(usual ’work)
’(Let me help you with that box and pointer diagram))

(method (grade-exam) ’A+) )

Usual takes one or more arguments. The first argument is a message, and the others are whatever
extra arguments are needed. Calling usual is just like saying (ask self ...) with the same
arguments, except that only methods defined within an ancestor class (parent, grandparent, etc.)
are eligible to be used. It is an error to invoke usual from a class that doesn’t have a parent class.

You may be thinking that usual is a funny name for this function. Here’s the idea behind the name:
We are thinking of subclasses as specializations. That is, the parent class represents some broad
category of things, and the child is a specialized version. (Think of the relationship of checking
accounts to accounts in general.) The child object does almost everything the same way its parent
does. The child has some special way to handle a few messages, different from the usual way (as
the parent does it). But the child can explicitly decide to do something in the usual (parent-like)
way, rather than in its own specialized way.

Multiple Superclasses

We can have object types that inherit methods from more than one type. We’ll invent a singer
class and then create singer-TAs and TA-singers.

(define-class (singer)
(parent (worker))
(method (sing) ’(tra-la-la)) )

(define-class (singer-TA)
(parent (singer) (TA)) )

(define-class (TA-singer)
(parent (TA) (singer)) )

> (define Matt (instantiate singer-TA))
> (define Chris (instantiate TA-singer))
> (ask Matt ’grade-exam)
A+

167



> (ask Matt ’sing)
(TRA-LA-LA)
> (ask Matt ’work)
WHISTLE-WHILE-YOU-WORK
> (ask Chris ’work)
(LET ME HELP YOU WITH THAT BOX AND POINTER DIAGRAM)

Both Matt and Chris can do anything a TA can do, such as grading exams, and anything a singer
can do, such as singing. The only difference between them is how they handle messages that TAs
and singers process differently. Matt is primarily a singer, so he responds to the work message
as a singer would. Chris, however, is primarily a TA, and uses the work method from the TA class.

In the example above, Matt used the work method from the worker class, inherited through two
levels of parent relationships. (The worker class is the parent of singer, which is a parent of
singer-TA.) In some situations it might be better to choose a method inherited directly from a
second-choice parent (the TA class) over one inherited from a first-choice grandparent. Much of
the complexity of contemporary object-oriented programming languages has to do with specifying
ways to control the order of inheritance in situations like this.

168


