
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2003 Instructor: Dave Patterson 2003-10-8

CS 152 Exam #1

Personal Information

First and Last Name Answer Key

 Your Login cs152-____ ____

Lab/Discussion Section Time & Location you attend

“All the work is my own. I have no prior knowledge
of the exam contents nor will I share the contents
with others in CS152 who have not taken it yet.”

 (Please sign)

Instructions
• Partial credit may be given for incomplete

answers, so please write down as much of the
solution as you can.

• Please write legibly! If we can’t read it from 3

feet away, we won’t grade it!

• Put your name and login on each page.

• This exam will count for 16% of your grade.

Grading Results

Question
Max.
Points

Points
Earned

1 30

2 35

3 35

Total 100

Name: _________________________ Login:________________________

Page 2 of 16

Question 1: Pipelined Processors (Jack & John’s Questions)

Suppose we design a 7 stage pipelined processor with 4
execution/memory stages (EX1 through EX4) and hardware
interlocks:

Assume an integer ALU latency of 0 and branches are still
delayed and calculated in the decode stage (like in the 5-
stage pipeline). Additionally, assume that the register
file is designed so that when a value is written then it
will be ready later in that same cycle.

Stage usage for R-type integer instructions:

Suppose that data memory accesses take 2 EX cycles: one
cycle to calculate the effective address (addrc), and one
cycle to access the result (mem) (like the 5-stage pipeline)
for both floating-point stores and integer stores.

Stage usage for memory access instructions:

We have additional stages (EX3 and EX4) because our
processor supports floating-point operations.

IF
fetch

ID
decode

EX1
ALU

EX2
nop

EX3
nop

EX4
nop

WB
regwr

IF
fetch

ID
decode

EX1
addrc

EX2
mem

EX3
nop

EX4
nop

WB
regwr

Name: _________________________ Login:________________________

Page 3 of 16

Question 1: Pipelined Processors [continued]

1a: Suppose that this processor requires a 2-cycle latency

between the following instructions:

 add.d F4, F0, F2

 s.d F4, 0(R1)

(add.d is a floating-point addition instruction, and
s.d is a floating-point store. F0, F2, F4 refer to
floating point registers, and R1 refers to a regular
integer register.)

Similar to the pictures for integer and memory
instructions, fill in the values for the stages used
for a FLOATING POINT ALU operation. If a stage is
unused, put 'nop'. If a label is not obvious (like
'fetch') please explain it.

Stages used for a floating-point ALU instruction:

 fetch -> decode -> calc1-> calc2->calck3->calc4->writeback

The important thing to recognize is that floating point
operations take all 4 execute cycles. Therefore, you need
something like calc1, calc2, calc3, and calc4.
3 points if correct
2 points if you only said it finished in EX4
1 point for finishing in EX3 (due to thinking add.d forwards
back to EX1 for the s.d.)

1b: How did you figure out the stages in 1a without us

telling you? Please be brief but precise.

2 cycle latency between add.d and s.d. This means that s.d.
doesn’t use the value F4 until EX2, so add.d must finish in
EX4 to have this 2 cycle latency.

3 points for a correct explanation using 2-cycle latency
1 point for at least knowing that FP ops take longer than
integer ops, 0 otherwise

Note: if you assumed 2 cycle latency meant 1 cycle latency,
then you got 1/3 for 1a, and 2/3 for 1b if good explanation.

IF

ID

EX1

EX2

EX3

EX4

WB

Name: _________________________ Login:________________________

Page 4 of 16

Question 1: Pipelined Processors [continued]

1c: Imagine that the following loop had just finished

executing its 100th iteration on the 7-stage pipeline.
How many more clock cycles will it take for the
pipeline to finish the 101st iteration?

Loop: l.d F0, 0(R1)
 stall

 add.d F4, F0, F2
 stall
 stall

s.d F4, 0(R1)
 stall

 addiu R1, R1, -8
 bne R1, R2, Loop

 stall (nop)

The stalls are shown above. This question was worth 7
points. Minus 1 for each stall not detected or extra stall,
minus 2 for including drain/fill or counting wrong, plus 1
if the answer was wrong but consistent with 2 cycle latency
meaning 1 cycle latency

Answer:___10____ clock cycles

1d: Reorder the instructions from question 1c so that the

number of stalls is minimized. How many cycles are
there between the finishing of the 100th and 101st
iterations now?

Reordered code:

 l.d F0, 0(R1)
 addiu R1, R1, -8
 add.d F4, F0, F2
 stall
 bne R1, R2, Loop
 s.d F4, 8(R1) #we must change the offset!
Any other solution with only 1 stall was accepted. Minus 2
for each extra stall, minus 2 if new solution doesn’t
execute properly, minus 1 for serious miscounting. If 1c was
wrong, 4/7 for good reduction relative to 1c.

Answer:__6_____ clock cycles

Name: __________________________ Login: ____________________

Page 5 of 16

Question 1: Pipelined Processors [continued]

1e: A forwarding path from stage X to stage Y is written as:

X to Y
This means that the register after stage X can forward some
value to the beginning of stage Y (i.e. after the register
between stage Y-1 and Y).

 In the table below, we have listed all of the possible

forwarding paths to the ID and EX2 stages. We'd like you to
tell us which ones are useful (in the sense that a
forwarding circuit between the two stages will do useful
work). If a forwarding path is useful, then also tell us
what kinds of data will be forwarded along the path. For
this problem, you may assume that there are three general
types of data that can be forwarded: integer ops, loads, and
floating point ops.

The path from EX2 to EX1 and the data that it carries is
provided as an example.

Forwarding
Path

Useful? If yes, which values can be forwarded?
For which types of instructions?

EX2 to EX1

YES NO

We can forward load values from memory
back for integer ops.

ID to ID

YES NO

Note: We also accepted yes if jal was
given as an explanation.

EX1 to ID

YES NO

We can forward integer ops to branch
comparisons.

EX2 to ID

YES NO

We can forward load values or integer
ops from memory to branch comparisons.

EX3 to ID

YES NO

We can forward integer ops or load
values to branch comparisons.

EX4 to ID

YES NO

We can forward integer ops or load
values to branch comparisons.

EX1 EX2

Integer ops, loads

Name: _________________________ Login:________________________

Page 6 of 16

Forwarding
Path

Useful? If yes, which values can be forwarded?
For which types of instructions?

ID to EX2

YES NO

EX1 to EX2

YES NO

EX2 to EX2

YES NO

We can forward the results of a load
word to a store word.

EX3 to EX2

YES NO

We can forward the results of a load
word to a store word.

EX4 to EX2

YES NO

We can forward the results of a
floating point op or a load word to a
store word.

Attempts were made to keep the grading of this section consistent
with wrong answers to 1a.

Name: _________________________ Login:________________________

Page 7 of 16

Question 2: Single Cycle Processor (Jack’s Question)
Your single-cycle processor seems to be executing random
instructions. You have been chosen by your group to investigate
and find out why. On the next page you will find a picture of
your datapath (note that this is a slightly different datapath
than shown in lecture), and the control table is below. You
suspect that the controller may be broken. You may assume that
the modules within the datapath (i.e. extender, alu) all work.

 PCSrc RegDst RegWr ExtOp ALUSrc ALUctr MemWr MemToReg
addu 0 0 1 1 X 0 0 0
subu 0 1 1 X 0 0 0 0
ori 0 1 1 0 X 2 0 0
Lw 0 1 1 1 1 0 1 1
Sw 0 x 0 0 1 0 1 x
beq Equal x 0 X 0 3 0 x
Jr 2 x 0 X x X 0 x
“Equal” means that PCSrc takes on the value of the equal signal
coming out of the =0? module. This will either be 0 or 1.

Looking at your partners’ online notebooks, you find the
following (you may assume these to be correct):

• The register file (regWr) and data memory (MemWr) both write
when their respective write signals are 1

• The extender will zero extend if the ExtOp bit is 0, and the
extender will sign extend when the ExtOp control bit is 1.

• The data memory reads asynchronously but has synchronous
writes (just like your single cycle lab).

• The =0? module will output 1 if the input to the module is
0, else it will output 0.

The ALUctr encoding is as follows:
Control
bits

Operation

0 add
1 sub
2 or
3 Xor

For the following stream of instructions, what does your broken
processor actually do? The first instruction has already been
done for you as an example. If there is more than one
possibility, please list all of them (note that this may be a
different instruction, correct behavior, or an undefined
instruction). If the incorrect result does not match a valid MIPS
instruction, please give a sequence of instructions that
correspond to the behavior. Also give a very brief explanation
of your possibilities. For simplicity, we have used the actual
register numbers rather than the names.

Name: _________________________ Login:________________________

Page 8 of 16

D
at

ap
at

h
fo

r Q
ue

st
io

n
2

(F
ee

l f
re

e
to

 te
ar

 o
ut

.)

Name: _________________________ Login:________________________

Page 9 of 16

Question 2: Single Cycle Processor [continued]

Original
Instruction

Possibilities

addu $1, $2, $0

addu $1, $2, $0 (if aluSrc is 0—correct
behavior)
addiu $1, $2, 33(if aluSrc is 1—incorrect
behavior)

subu $4, $5, $6

addu $6, $5, $6 (regDst and ALUctr are
wrong)
3 pts for changing the subu to addu
3 points for changing the destination
register from $4 to $6

ori $7, $8, 0x0025

or $7, $8, $7 (if aluSrc is 0, we get
incorrect behavior)
ori $7, $8, 0x0025 (if aluSrc is 1, we get
correct behavior)
worth 9 points
minus 3 if registers were slightly wrong
($8, $7)
minus 4 for other register mistakes

beq $11, $12, 24

beq $11, $12, 24 (correct behavior).

Despite using xor, the beq will still work
because xor will output a 0 when the values
are equal as well.
worth 5 points.
minus 1.5 for writing out an xor instruction
in conjunction with a beq
minus 2.5 for changing the “24” to a “6”
(you were told that the modules and datapath
were correct, so no reason to assume we
didn’t shift by 2)

sw $10, -12($31)

ExtOp is wrong, so it doesn’t sign extend.
sw $10, 0x0000FFF4($31)-even though this
isn’t a real instruction, it describes the
behavior correctly. This sequence below was
also accepted (note there were other similar
ones that performed the same thing):
lui $at, 0 (minus .5 for not have lui)
ori $at, $at, 0xFFF4
add $at, $at, $31
sw $10, 0($at)
2/5 if recognized ExtOp problem
3/5 if tried to get there
4/5 if sw $10, FFF4($31) –wrong because this
instruction will sign extend. Different
behavior

Name: _________________________ Login:________________________

Page 10 of 16

lw $9, -16($29)

memWr is 1, so this instruction will do a lw
$9, -16($29) and sw $9, -16($29). However,
you have to be careful of the timing, and
need to recognize both instructions happen
at the same time. In essence, this is a
“swap” instruction.
worth 10 points.
8 points for having both instructions
7 points for both instructions but bad
explanation
6 points for something with lw
5 points for just having sw
4 points for some sort of understanding
3 points for writing down correct behavior

Name: _________________________ Login:________________________

Page 11 of 16

Question 3: Multicycle Processor (Kurt’s Question)

We'd like to give you a feel for how microprogramming can help
out with tricky CISC instructions. We'd like you to implement a
new addressing mode (register indirect; i.e. register value is an
address with no offset) for the sub instruction:

 sub.mem $rd $rs $rt # Mem[$rd] = Mem[$rs] - Mem[$rt]

Your solutions to 3a-d will be graded, in part, on elegance!

3a: Please come up with a suitable machine representation for

sub.mem. You may assume that opcode 44hex and funct 44hex are
both unused. Make your representation clean and
complementary to the MIPS datapath.

Here's an example of what we are looking for (for nor):

Now do the same for sub.mem.

5 Points

We gave full credit for the following answers:

0x14 rs rt rd 0 0

0 rs rt rd 0 0x14

We gave 1pt extra credit for this answer:

0x14 rs rt rd 0 34 (The funct code for sub)

We took off a point for using up extra opcodes/functs (as only
one is necessary, or, if you use two, one should be sub) as
follows:

0x14 rs rt rd 0 0x14 : 4/5

Anything else got a zero.

Name: _________________________ Login:________________________

Page 12 of 16

Question 3: Multicycle [continued] - Datapath

3b: Above is the multicycle datapath from lecture. Please draw

below any changes to the datapath to support your sub.mem.
YOU MAY NOT ADD ANY REGISTERS!!! (Do everything with muxes
and simple, combinational modules.) Don't redraw the entire
datapath – just circle the areas you’re changing in the
above diagram and then re-draw modules and muxes that you
have changed (including control line names) below.
DRAW LEGIBLY.

[16 Points] While we saw all sorts of solutions to this problem, there were 3
main things that had to happen in the datapath:

1. [6 points] A way to put Reg[Rs] (A) and Reg[Rd] (B) on the RAdr line of
the Memory. Some people chose to add A-only and B-only signals to the
ALU while others chose to simply add to lines to the IorD mux (namely:
A and B).

2. [6 points] A way to store Mem[Reg[Rs]] and Mem[Reg[Rt]] simultaneously
and feed them to the ALU. Most people chose to add a mux in front of A
and B such that Dout (from Memory) could be one of the inputs to A and
B. Other people chose to in-line the values on the MDR i.e.
Mem[Reg[Rs]] would be on the output wires of the MDR while Mem[Reg[Rt]]
would be on the input wires and add new wires on ALUSelA and SLUSelB.
Both were acceptable.

3. [4 points] A way to store the result of the ALU subtract into memory.
Most people chose to add a mux in front of Din that had Aluout as an
input. Rd can’t be added as an input to WrAddr. (Why not?) Rather, most
people chose to add a mux in front of Ra on the regfile and to add a
muc in front of WrAddr with A as an input.

For each of these three ideas, we gave full credit for coming up with
something that would work, half credit for something that would almost work
(like using Rd rather than Mem[Rr] as WrAddr) and 0 otherwise.

Name: _________________________ Login:________________________

Page 13 of 16

Question 3: Multicycle [continued] - Datapath

3c: Above is the microassembly language description from

lecture. Please describe any additions or modifications to
microassembly language necessary to support sub.mem. Be sure
to include the field name, the new field values, as well as
EXACTLY which control lines are set when the field value is
asserted. Be precise and print legibly!

[7 Points.] Solutions for this section are obviously dependent on
changes to the datapath. Generally, we took off one point for each
control line of each value of each field that was unspecified or mis-
specified. (We gave clock-enables to everyone for free.) Here’s a
solution for the datapath that stores values into A and B:

Field Value Meaning
Memory A->A A <= Mem[A]
Memory B->B B <= Mem[B]
Memory ALU->A Din <= ALUout; WrAddr <= A
MemReg Rd->A A <= Reg[Rd]

[There are cleaner solutions that involve creating new fields, but we
wanted to keep the example solution closer to what people actually
did.]

Name: _________________________ Login:________________________

Page 14 of 16

Question 3: Multicycle [continued] - Datapath

3d: Above are the implementations for a few MIPS instructions in

our microassembly language. Please give a complete microcode
assembly implementation for your sub.mem. You may assume
that dispatch will jump to a label named ‘sub.mem’.
Print legibly.

Label ALU SRC1 SRC2 ALUDest Memory MemReg PCWrite Sequence
Sub.mem A->A seq

 B->B seq

 sub rs rt Rd->A seq

 ALU->A fetch

[7 points] Generally, full credit if it unless...

–5 for using incompatible fields simultaneously.

-7 for stretching the clock cycle (by doing a memory access and a
dependent subtract in the same cycle – most people who lost
points here tried the in-line MDR approach).

Name: _________________________ Login:________________________

Page 15 of 16

Question 3: Multicycle [continued] - Datapath

3e. EXTRA CREDIT: QUITE DIFFICULT AND NOT WORTH MANY POINTS:

(We suggest that you finish all the other problems on the
exam before you attempt this one.) 5 EC points.

Using your new datapath and control from above, please
implement the Subtract and Branch if Negative (SBN)
instruction in microcode:

sbn $rs $rt immed # Mem[$rs] = Mem[$rs]-Mem[$rt]

 # if (Mem[$rs]<0) goto PC+4+immed

Please give a machine representation (like 3a), draw any
changes to the datapath (like 3b), explain any new
microassembly fields and values (like 3c), and give the
complete microassembly sequence (like 3d).
Again: No new registers.

Hint: You already have the sub.mem part almost done – the
hard part is figuring out how to jump.

 Machine Representation:

tbd

 Datapath Changes

(You may assume your new datapath from 3b.)

tbd

Name: _________________________ Login:________________________

Page 16 of 16

Question 3: Multicycle [continued] - Datapath

3e continued:

 Additions to microassembly language:

 tbd

 SBN microassembly implementation (complete):

 tbd

