
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Fall 2003 Instructor: Dave Patterson 2003-11-19 v1.9

CS 152 Exam #2 Solutions

Personal Information

First and Last Name Peter Perfect

 Your Login cs152-____ ____

Lab/Discussion Section Time & Location
you attend

“All the work is my own. I have no prior
knowledge of the exam contents nor will I

share the contents with others in CS152
who have not taken it yet.”

(Please sign)

Instructions
• Partial credit may be given for

incomplete answers, so please write
down as much of the solution as you
can.

• Please write legibly! If we can’t read it

from 3 feet away, we won’t grade it!

• Put your name and login on each

page.

• This exam will count for 16% of your

grade.

Grading Results

Question
Max.

Points
Points
Earned

1 40

2 30

3 30

Total 100

Name: __________________________ Login: ____________________

Page 2 of 17

Question 1: Potpourri (Jack and Dave’s Question)

Part A: [4 points]

TLBs entries have valid bits and dirty bits. Data caches have them also. Which
of the following are true? Circle the correct answer(s).

A. The valid bit means the same in both: if valid = 0, it must miss in both
TLBs and Caches.

B. The valid bit has different meanings. For caches, it means this entry is
valid if the address requested matches the tag. For TLBs, it determines
whether there is a page fault (valid=0) or not (valid=1).

C. The dirty bit means the same in both: the data in this block in the TLB or
Cache has been changed.

D. The dirty bit has different meanings. For caches, it means the data block
has been changed. For TLBs, it means that the page corresponding to
this TLB entry has been changed.

Explain (briefly):

A: True. If valid is 9, that means that there is no block or mapping there or the
block or mapping has become bad somehow. Therefore, the TLB and cache will
miss.
B. False. No, an invalid bit means that the entry in the TLB is garbage.
C. False. A TLB is not in control of VA->PA mappings, therefore it could never
have anything to “writeback” the dirty data to.
D. True. Yes, since a TLB is a cache of VA->PA mappings, if it is “dirty” it
means that that page is dirty.

Grading:

2 points for each correct marking (A through d). No partial credit.

Name: _________________________ Login:________________________

Page 3 of 17

Part B: [4 Points]

Buses and networks share some common characteristic yet retain some
differences. Which of the following are true? Circle the correct answer(s).

A. Multimaster buses need to resolve arbitration before using the bus, while
networks don’t.

B. Both buses and networks transfer multiple words to increase
communication bandwidth.

C. Networks are often connected in a hierarchy while buses are not
connected in such a way.

D. Buses usually connect computers together while networks usually
connect I/O peripherals to processors.

Explain (briefly):

A: False. Both need arbitration of some sort. As an example, Ethernet collision
detection (“transmit and if there is a collision, transmit again”) counts as
arbitration.

B. Depends. This is certainly true for most networks and buses, but not true
for all. We gave credit for any answer with a decent explanation.

C. False. Networks obviously are, but consider the FSB/PCI/USB hierarchy in
pcs.

D. False. Just the opposite.

Grading:

We decided that parts A and B were not worded properly, so we ignored them.
Parts C and D were worth +2 each.

Name: _________________________ Login:________________________

Page 4 of 17

Question 1: Potpourri (Jack and Dave’s Question) Continued …

Part C: [8 Points]

What would be the bottleneck if we tried to turn an ordinary single issue non-
speculative tomasulo machine into a dual issue machine by changing only the
issue (and Icache) unit to issue 2 instructions at once?

Well, all sorts of things. Primarily, we would have a problem with the CDB,
since we would be issuing 2 instructions per cycle, but the most that we could
“commit” to be broadcast by the CDB during any given cycle would be 1. We
could also have problems with not having enough FUs or Stations.

Grading:

We accepted pretty much any answer that made any sense at all. Just about
every other component could possibly be the bottleneck.

Name: _________________________ Login:________________________

Page 5 of 17

Part D: [8 points]

Briefly explain how the non-speculative Tomasulo algorithm resolves the
following classes of hazards:

RAW: By keeping pointers to the most recent writes in Register Status fields,
and since ops are issued in program order, reads will always get the correct
value because they will not read operands until the providing FUs broadcast
them.

RAR: This is not a hazard. You TAs are soooo sneaky.

WAW: The register status fields, which ensure that all subsequent reads will
get the last write to their source operands if the result is still in flight.

WAR: Again, register renaming will ensure that, for this antidependence, if the
write executes before the read, the write will go to a renamed register.

Grading:

+2 for each correct. We accepted just about any answer that demonstrated
understanding of the tomasulo architecture. We gave +0 on the RAR hazard for
anyone who did tried to use some complicated mechanism to explain it away.

Name: _________________________ Login:________________________

Page 6 of 17

Question 1: Potpourri (Jack and Dave’s Question) Continued …

Part E: 5 points

Again, assume we have a dual-issue Tomasulo machine with exactly three
reservation stations for arithmetic instructions. The reservation
stations/functional units along with their execution latencies are as follows:

adds and subs -- a cycles
multiply -- 2a cycles
divide -- 5a cycles

(Loads, stores, and branches are handled separately.)

What is the minimum number of entries in each of the reservation stations and
in the ROB necessary to guarantee that we won’t stall on a structural hazard
while trying to issue an arithmetic instruction?

Add/sub reservation station: _____∞__________________

Multiply reservation station: ____∞__________________

Divide reservation station: _____∞_________________

Number of entries in the Reorder Buffer: _____∞_________________

Solution: The key is “dual-issue” – if our program segment consists, for
example, of a stream of adds, then our single add function unit will commit at
most one add per cycle (even if it is pipelined). Therefore, since we issue two
but can only commit one, we will need an infinite number of entries in both the
add reservation station and the ROB to ensure no structural hazards. The
same reasoning can be applied to mult and div instructions.

Grading:

*5/5: for putting ∞/∞/∞/∞.
* 2/5 for putting 2a/4a/10a/16a (for recognizing that dual-issue doubles
our entry requirements) or a/2a/5a/8a.
* 0/5 for anything else

Name: _________________________ Login:________________________

Page 7 of 17

Part F:

The x86 instruction set only has 8 ISA-defined general purpose registers.
Assume that each instruction only writes to one register, but may read from up
to 3 registers (those darn CISC instructions!) If the maximum number of
instructions that can be in flight at any given time is 32, how many physical
registers must we have in order to implement explicit register renaming?

Number of physical registers: _______40_____

Explanation: Assume a program segment as follows (this isn’t real x86):

Add $t0 $t0 $t1
Add $t0 $t0 $t2
Add $t0 $t0 $t3
{etc.}

In this case, if 32 of these adds can be in flight at one time, we will need 32
destination regs to hold their results. Additionally, we will need 8 registers to
hold the ISA-defined values, bringing our total to 40.

Grading:
+5: 40 or 39
+2: 32
+0: Otherwise

Name: _________________________ Login:________________________

Page 8 of 17

Question 2: Cache This! (Kurt’s Question)

Kurt's rinky-dink computer has the following organization:

His computer has 32-bit words and addresses and no virtual memory
system.

The worst-case latency of the entire memory system is 1 cycle. (I.e., the cycle
time is long enough such that L1Dcache, L1Icache, and L2 can all miss on the
same request, fill their blocks, and L1I and L1D can return the requested data
all in the same cycle. This assumption is totally unrealistic and defeats the
purpose of having a cache, but it will make your calculations easier.)

Assume further that the L2 cache is dual-ported but services Icache requests
before Dcache requests.

IF DE ME EX RW

L1 Icache:
Size: 8words
Assoc: 2-way LRU
Blocksize: 2words
Policy: Reads/fills

Victim Cache

L1 Dcache:
Size: 8words
Assoc: Direct Map
Blocksize: 2words
Policy: WriteBack,
NoAllocate

Victim Cache
2 blocks, fully
associative

L2 Unified Cache: (dual ported)
Size: 64 Words Blocksize: 4 words
Associativity: Fully Associative
Write Policies: WriteThrough, WriteAllocate

Main Memory:
Each word in memory is initialized with its address
Example: 0x00000001 contains 0x1, 0x00000002 contains 0x2,
0x0badbeef contains 0x0badbeef, etc. (except as explicitly listed below)

Name: _________________________ Login:________________________

Page 9 of 17

Question 2: Cache This! (Kurt’s Question) Continued …

Part A:

Please show the structure of each of the 4 caches in a table format. We’ve done
the L1 Dcache for you; your answers should contain the same types of
information as ours. Be sure to include the size of all fields in the cache.

L1 Icache:

Index Tag Word0 Word1
0

1

Tag: 28
Index: 1
Block: 1

+2 correct index size
+2 correct tag size

L1 Icache Victim Cache

Tag Word0 Word1

Tag: 29
Index: 0
Block: 1

+2 correct tag size
+2 correct index size

L1 Dcache:

Index # Tag Word0 Word1
00
01
10
11

Tag will be 27 bits for each block.
Index will be 2 bits from address.
Block offset will be 1 bit.
(Byte offset is 2 bits.)

L2 Unified

Tag W0 W1 W2 W3

{16 total lines}

Tag: 28 Index: 0 Block: 2

+2 correct tag size
+2 correct block size

Name: _________________________ Login:________________________

Page 10 of 17

Question 2: Cache This! (Kurt’s Question) Continued …

Part B:

Assume that Kurt just turned on his computer (with memory initialized as
described above except for the addresses below) and then started executing
these instructions. For each instruction, consider each of the 4 caches. For
each cache, indicate whether the instruction hits in that cache ("H"), misses in
that cache ("M"), or is never checked ("X".) For cache hits and misses, also
include the cycle number on which the access occurred. Some boxes may
have more than one entry. We have filled in a couple entries for you.

Don't forget that this is a pipelined processor!

We’ve provided a table on the next page which you may find helpful.
However, we will only grade your answers on this page.

Address Instruction L1

Icache
L1
Victim

L1
Dcache

L2

0x00000000 Lw $1 0xBAD0($0) M-1 M-1 M-4 M-1 M-4

0x00000004 Lw $2 0xBAD4($0)

H-2 X H-5 X

0x00000008 Lw $3 0xBA04($0)

M-3 M-7 M-6 H-3 M-6

0x0000000C Sw $1 0($0)

H-4 X M-7 H-7

0x00000010 Sw $2 0x0C($0)

M-5 M-7 M-8 M-5 H-8

0x00000014 Sw $3 0x80($0)

H-6 X M-9 M-9

0x00000018 Sw $3 0x0C($0)

M-7 M-7 M-10 H-10

Grading:
+2: Alternating hits/misses on L1I.
+2: L1I Hit -> X for L1Vic, L1I Miss -> Check L1Vic
+2: L1D hits on access to 0xBAD4 (inst 2)
+2: L1D misses twice on 0x000C (because of no-write-allocate)
+3: L2 not checked when both L1I and L1D hit (instt 2)
+3: L2 hits both times on 0x0C (inst 5 and 7)
+4: L2 accessed twice per inst when both L1I and L1D miss.

Name: _________________________ Login:________________________

Page 11 of 17

This page will not be graded!! This page will not be graded!!
 Instr 00 04 08 0C 10 14 18
Cycle Cache Lw $1 Lw $2 Lw $3 Sw $1 Sw $2 Sw $3 Sw $4

1 L1-I m
 L1-Vic m
 L1-D
 L2 m

2 L1-I h
 L1-Vic x
 L1-D
 L2 x

3 L1-I m
 L1-Vic m
 L1-D
 L2 h

4 L1-I h
 L1-Vic
 L1-D m x
 L2 m x

5 L1-I m
 L1-Vic m
 L1-D h
 L2 x m

6 L1-I h
 L1-Vic
 L1-D m x
 L2 m x

7 L1-I m
 L1-Vic m
 L1-D m
 L2 h h

8 L1-I
 L1-Vic
 L1-D m
 L2 h

9 L1-I
 L1-Vic
 L1-D m
 L2 m

10 L1-I
 L1-Vic
 L1-D m
 L2 h

11 L1-I
 L1-Vic
 L1-D
 L2

Name: _________________________ Login:________________________

Page 12 of 17

Name: _________________________ Login:________________________

Page 13 of 17

Question 3: Superscalar (John’s Question)

You are an engineer working at Advanced Intelligent Devices. Your workers
have proposed 3 different MIPS 2000 processor designs to you.

Processor A is a 5-stage pipeline identical to the one described in your Fall
2003 CS152 class. It has a full five stages and writes to the register file can be
read during the same cycle:

Processor B is a limited superscalar processor that can handle branches and
jumps only in the first pipeline and memory operations only in the second
pipeline. Integer operations can be executed in both pipelines as long as they
are not dependent. Instructions are only issued if they are not dependent. The
first pipeline always executes earlier instructions and the second pipeline
always executes later instructions:

Processor C is a full superscalar processor that has no restrictions on
placement of branches, jumps, or memory operations. The only restriction is
that like the limited superscalar pipeline, earlier instructions are always in the
first pipeline:

IF ID EX1 NOP WB1

EX2 MEM WB2

IF ID EX WB MEM

IF ID EX1 MEM1 WB1

EX2 MEM2 WB2

A:

B:

C:

Name: _________________________ Login:________________________

Page 14 of 17

Question 3: Superscalar (John’s Question) Continued …

Each of these three processors detects hazards and issues stalls in the decode
stage. In both of the superscalar processors the next four instructions will
always be in the fetch and decode stages. The superscalar decode stages will
issue 0, 1, or 2 instructions to the execute stages depending on inter-
instruction dependencies and structural hazards. If a dependency prevents an
instruction from being issued then it will not be issued to the EX unit on that
cycle and a nop will take its place.

All three processors have a branch prediction unit that uses a branch target
buffer and a 2-bit branch history table for prediction. The first time that a
branch is encountered it is assumed that it will be taken.

The block size of both the instruction and data caches is 64 bytes. The data
cache is also two-way set associative.

Part A:

We’d like you to consider the state of each of these 3 processors while they are
executing the following code segment:

0x40000000 lui $t0, 0x3fff
0x40000004 ori $t0, $t0, 0xfffc
0x40000008 lui $t9, 0x0000
0x4000000c ori $t9, $t9, 0xfffc
0x40000010 loop: lw $t1, 0($t0)
0x40000014 lw $t2, 0($t9)
0x40000018 lw $t3, -4($t0)
0x4000001c lw $t4, -4($t9)
0x40000020 addu $t5, $t1, $t2
0x40000024 addu $t6, $t3, $t4
0x40000028 sw $t5, 0($t0)
0x4000002c sw $t6, -4($t0)
0x40000030 addiu $t9, $t9, -8
0x40000034 bne $t9, $0, loop
0x40000038 addiu $t0, $t0, -8

 Part A continues on the next page....

Name: _________________________ Login:________________________

Page 15 of 17

Question 3: Superscalar (John’s Question) Continued … [15 points]

In the 5-stage pipeline, when instruction 0x4000000c is completing WB for the
first time, the pipeline looks like this.

Now fill in the stages for each of the pipelines as instruction 0x40000034 is
completing WB for the second time. (If you like, you can use just the first two
fields of the instruction.)

Processor A:

Processor B:

Processor C:

Grading: 1pt per stage per pipeline. If an assumption in a later stage messed
up an earlier stage, we took off only ½ per stage.

IF
lw $t4, 4($t9)

ID
lw $t3,-4($t0)

EX
lw $t2, 0($t9)

WB
ori $t9 $t9 fffc

MEM
lw $t1, 0($t0)

IF
Lw $t3

ID
Lw $t2

EX
Lw $t1

WB
Bne $19

MEM
Addiu $t0

IF

Sw $t5

Sw $t6

ID

Addu $t5

Addu $t6

EX1
Lw $t3

MEM1
Lw $t1

WB1
Bne $t9

EX2
Lw $t4

MEM2
Lw $t2

WB2
Addiu $t0

IF
Addu $t5

Addu $t6

ID
Lw $t3

Lw $t4

EX1
nop

NOP
nop

WB1
Bne $t9

EX2
Lw $t2

MEM
Lw $t1

WB2
Addiu $t0

Name: _________________________ Login:________________________

Page 16 of 17

Question 3: Superscalar (John’s Question) Continued …

Part B: [5 points]

If you were asked to reorder the instructions to improve performance for either
processor B or processor C, which would be easier and why?

The best answer is C, since C has fewer restrictions that need to be taken into
account when optimizing. We accepted B if and only if you noticed that for B,
you do not need to worry about basic blocks being aligned evenly or oddly.

Grading: All or nothing, depending on the value of your explanation.

Part C: [10 points]
Now reorder the instructions for the processor that you thought was easier.
Indicate where the stalls will occur (if there are any left). You may not change
the code size.
We’ve included some extra lines on the next page.

However, we will only grade this page – so put your final answer here!

Address Label Instruction
0x40000000 Lui $t0, 0x3fff #optimization for B
0x40000004 lui $t9, 0x0000
0x40000008 ori $t0, $t0, 0xfffc
0x4000000c ori $t9, $t9, 0xfffc
0x40000010 Loop: addiu $t9, $t9, -8
0x40000014 lw $t1, 0($t0)
0x40000018 addiu $t0, $t0, -8
0x4000001c lw $t2, 8($t9)
0x40000020 lw $t3, 4($t0)
0x40000024 lw $t4, 4($t9)
0x40000028 addu $t5, $t1, $t2
0x4000002c sw $t5, 0($t0)
0x40000030 addu $t6, $t3, $t4
0x40000034 bne $t9, $0, loop
0x40000038 sw $t6, -4($t0)
0x4000003C
0x40000040 (Processor C on next page)
0x40000044
0x40000048

Name: _________________________ Login:________________________

Page 17 of 17

This page will not be graded!! This page will not be graded!!

Address Label Instruction
0x40000000 lui $t0, 0x3fff #optimization for C
0x40000004 lui $t9, 0x0000
0x40000008 ori $t0, $t0, 0xfffc
0x4000000c ori $t9, $t9, 0xfffc
0x40000010 loop: lw $t3, -4($t0)
0x40000014 lw $t4, -4($t9)
0x40000018 lw $t1, 0($t0)
0x4000001c lw $t2, 0($t9)
0x40000020 addiu $t9, $t9, -8
0x40000024 addiu $t0, $t0, -8
0x40000028 addu $t6, $t3, $t4
0x4000002c addu $t5, $t1, $t2
0x40000030 sw $t5, 8($t0)
0x40000034 bne $t9, $0, loop
0x40000038 sw $t6, 4($t0)
0x4000003C
0x40000040
0x40000044
0x40000048

Grading:

For whichever processor you chose, we compared the number of stalls in your code
versus the number of stalls in our code (3 for B, 0 for C). For every additional stall
in your code, we took off 4 points (3 if you recognized that it was a stall). If your
optimization was broken, we gave 0 points.

