
Spring 2003 CS152 BASIC PROJECT TUTORIAL

Topic Index
A. Creating a Project
B. Adding New Modules
 i. Adding a Verilog Source
 ii. Adding a Schematic Source
 iii. To view your schematic in Verilog HDL
 iv. Creating a Schematic Symbol from Verilog or Schematic Sources

v. Combining Verilog and Schematic Sources
vi. Adding a Testbench Source

C. Simulation and Testing
 i. Testing manually
 ii. Simulating the Testbench (Get Timing delays)
 iii. Testbench fixtures
 iv. Timing Analysis

A) CREATING A PROJECT

1) Load up Xilinx Project Navigator.

2) Go to File New Project and the following window should pop up:

3) Set the Project settings as seen above:
Project Name What you wish to call the project
Project Location Place in c:\Temp and later move the project

directory into your U:\ for storage
Device Family VirtexE
Device xcv2000e-6fg680
Design Flow XST Verilog

B) ADDING NEW MODULES

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

1

There are 3 types of modules you will add: Verilog, schematic and testbench modules.

Adding Verilog Modules:

1) Go to Project New Source and then Select Verilog Module. Under File Name, give
the Verilog module you want to create an appropriate name. * Note: names should start
with an alphabetic letter (meaning do NOT begin the name with a digit or special
character). For this tutorial, call the module “bit1adderv”. Click Next.

2) The next window that pops up allows you to specify the inputs and outputs of your
Verilog module. You don’t have to specify them all at the beginning; you can add more
inputs and outputs directly in the Verilog file. Add inputs a, b, cin and outputs sum and
cout. Click next. And then click finish.

3) The Verilog file should pop up and edit it from there. You can find details on how to
program in Verilog elsewhere. Don’t forget to save when you’re done.
Your code for bit1adderv.v should look somewhat like this:

Adding Schematic Modules:

Now you will learn how to make schematics, which basically means you will be creating
logic designs down to each single gate and wire.

1) Go to Project New Source and then Select Schematic Module. Under File Name,
give the Schematic module you want to create an appropriate name. * Note: names
should start with an alphabetic letter (meaning do NOT begin the name with a digit or
special character). For this tutorial, call the module “bit1adder”. Click Next. And then
click finish.

2) ECS, Xilinx’s schematic program should load. A blank sheet should appear.

To add basic logic gates click on the button that looks like the following:

Or you can use the hot-key Ctrl-F

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

2

Two windows on the right hand side should appear including all the gates that you can
add to the schematic. It should be fairly self explanatory. Press the ESC key when you
are done adding symbols/gates.

*Note:

schematic symbols you create within your
project can be accessed by selecting the
directory in which you placed your project.

For example in the right picture, the project
was placed in c:/temp/test and two symbols
created for that project from Verilog or
schematic sources are named “bit1adder”
and “bit2adder”.

To add wires click on the button that looks like the following:

Or you can use the hot-key Ctrl-W
Put your mouse head over the wire you want to begin the wire until you see a red outline
and left click. Then drag your mouse and the wire to the net you want to connect it too
until you see a red outline and left click. The wire then should be connected. Press the
ESC key when you are done. Use can use the same method to add busses.

To name nets/wires click on the button that looks like the following:

CS152 Spring 2003, Computer Architecture

 Professor John Kubiatowicz, Written by Ben Liao

3

Or you can use the hot-key Ctrl-D
Three new forms should appear on your toolbar as seen below:

Type the net name in the middle text box: For example, if you want to name the net
“hello”, type hello in the text box as shown below:

Finally you should see the net name at the end of your cursor when you place the cursor
over the schematic window. Place the cursor over the wire/net you wish to name and left
click. Press the ESC key when you are done.

To add I/O pins click on the button that looks like the following:

Or you can use the hot-key Ctrl-G
Select the type of pin you wish to add in the new box in the toolbar as seen below:

Finally place the cursor over the wire/net you wish to add the pin to and left click. Press
the ESC key when you are done.

This should be enough for you to complete a basic design. If you need more help consult
the Xilinx ECS manual.

Now after playing around with the tools, create a 1 bit adder that looks like the following:

Don’t forget to save when you’re done.

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

4

The schematic file “bit1adder.sch” should then appear in the Sources in Project window
in Xilinx Project Navigator.

To view your schematic in Verilog HDL

Select your schematic file in the Sources in Project window. Then in the Processes for
Current Source window, expand the Design Entry Utilities box. Double click View
Verilog Functional Model and the Verilog file should open. The file is read-only though.

Creating a schematic symbol from a Verilog or Schematic source in your project.

Select the source file in the Sources in Project window. Then in Processes for Current
Source window, expand the Design Entry Utilities box. Double click Create Schematic
Symbol. This will allow you to use the block you created in the source file in the ECS
schematic editor program. This allows you to reuse a block you created in ECS without
having to redraw it over and over again.

Combining Verilog and Schematics

You can easily combine schematic and Verilog modules in your project. For this tutorial,
we will use both 1 bit adders you created in Verilog and in schematic by “wrapping” both
adders in a Verilog file to create a 2 bit adder. Basically in Verilog you can reference
each schematic module by just referencing the name of the schematic block.

1. Create a new Verilog module as detailed in the previous sections named “bit2adder”.
2. For the appropriate inputs and outputs, don’t forget some are 2 bit busses.
3. Your code should look somewhat like the following:

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

5

4. Don’t forget to save the file.

Adding Testbench Modules:

A testbench module is used to test the functionality or get the expected results of
your project designs. You will have to create a separate testbench for each
individual source you would like to test. For the current project let’s create a
testbench to make sure bit2adder works correctly. To accomplish this, do the
following steps:

1. Select the bit1adder.v source in the Sources in Project window.
2. Select Project New Source.
3. In the New dialog box, select Test Bench Waveform source type.
4. Type the name “bit2adder_tbw”.
5. Click Next.
6. In the Associate with Source window, select bit2adder. This associates the
testbench with the bit2adder so the testbench file knows which file you are going
to be testing with. Click Next.
7. Click Finish.

HDL Bencher then is launched and ready for timing requirements to be entered.

You can now specify the timing parameters used during simulation. The
clock high time and clock low time together define the clock period for
which the design must operate. The Input setup time defines when inputs
must be valid. The Output valid delay defines the time after active clock
edge when the outputs must be valid.

For this tutorial, you will not change any of the default timing constraints
but will use the defaults for Combinatorial Timing.

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

6

The settings should be set as shown above. Check Combinatorial Design and set
the Check outputs and Assign inputs to 50 ns.

Click OK to accept the default timing constraints.

Initializing Inputs

For each signal cell at a specific clock cycle, click on the cell to specify the value
you want it to have starting at that clock cycle. You will have to type in the value
you would like it to have if the signal is more than 1 bit, else the signal is 1 bit
and you can just click it to toggle its value. The signal will hold the value you
entered for the rest of the simulation after the indicated clock cycle unless you set
its value again in a later cycle. *NOTE If you set the output values to the
expected correct results, when you generate the expected outputs later on, HDL
bencher will check if the actual results by running the inputs through your design
will match your inputted outputs. This may be useful for your testing purposes.

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

7

Set the input values to look like the following:

Finally, save your testbench waveform by selecting
File Save Waveform or by clicking the Save Waveform icon in the toolbar.

Next, HDL Bencher will prompt you to set the number of clock cycles for which
you wish to simulate.
Enter the number of cycles you want the testbench to simulate for in the dialog
box: 'End the testbench __ cycles after the last input assignment'. The default
value is 1. For this tutorial, let’s set it to 8. Click OK and proceed to exit the
HDL Bencher. The new testbench waveform source (bit2adder_tbw) is
automatically added to the project.

Generating the Expected Simulation Output Values
Now you can generate the expected outputs for the bit1adder module based on the
initialized inputs you have entered.
1. Select bit2adder_tbw.tbw in the Sources in Project window.
2. In the Processes for Current Source window, click the + beside ModelSim
Simulator to expand the hierarchy.
3. Double-click Generate Expected Simulation Results.

This process runs a background simulation using the inputs specified, generating
output values which are added to the testbench waveform.
Your testbench waveform should look like the following.

Exit HDL Bencher without saving your waveform.

C) SIMULATING YOUR DESIGN

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

8

In this course, you can also use ModelSim to simulate your designs. It allows you to
assign random values to inputs of your design and it can generate waveforms for you to
view your design’s outputs.

Launching ModelSim to load your design

Manually testing your design

Select the source module in the Sources in Project window that you wish to simulate. In
our case, select bit2adder.v. Then in the Processes for Current Source window, expand
the Design Entry Utilities box. Double click Launch ModelSim Simulator. This should
load up ModelSim.

Several windows should pop up including the main ModelSim command window along
with wave, structure and signals windows.
You’ll notice that all logical nets in your design will appear in the signals window.

Originally all the nets that are not already set to a specific value are by default in a high
impedance state, denoted by Hiz or z’s. You can set the input values (and even the
output values, though most likely you would not want to do that) to specific values by
first selecting the signal you want to set in the Signals window, and then selecting in the
toolbar, signals Edit Force. The following window should pop up:

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

9

Enter the value you want the net to be set to in the Value field, and you can also specify
how long you want the signal to be held at that value in the Delay For field or specify the
exact cycle when the signal should stop being forced in the Cancel After field. Click OK.

Set all input signals to any test values and then you can begin the simulation.
To simulate, go into the main ModelSim command prompt and type “run” and press the
Enter key. This will run the simulation for one cycle. You can have it run for more than
one cycle by typing “run” and then followed by the number of cycles you want it to
simulate for. The resulting simulated outputs will appear as waveforms in the Wave
window. Using this method of testing, you will have to manually test if the output values
are correct though. This may certainly be a tedious task, though it does allow you to
view the timing delays as well as change input values on the fly.

To exit ModelSim, just close the main command window.

Simulating your design using a testbench module.

Simulating your testbench module through ModelSim after
synthesizing/mapping/implementing your design will allow you to view the actual timing
delays and characteristics of your design. Previously, you could only check the
functional behavior of your designs (meaning it spits out the right outputs for the right
inputs on a high level). To do this:

First select your previously created testbench source in the Sources in Project window.

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

10

In the Processes for Current Source window, expand the ModelSim Simulator box, and
double click Simulate Post-Place & Route Verilog Model.
This will launch ModelSim which will run your testbench (simulate the input values you
set in the testbench). The resulting waveforms will result in the wave window. From
here you should be able to identify timing the results of your testbench and also timing
delays for your tested module.
The resulting waveforms in the wave window may not be easily seen b/c the time interval
between clock cycles may be too long or too short. To remedy this you can either use the
zoom out tool (the magnifying glass with the plus sign) to shorten the length between
clock cycles and view more of the wave at once, or the zoom in tool to do the opposite.

The resulting waveform from bit2adder_tbw.tbw should look like the following:

From the output waveforms, you can calculate the timing delays between when an input
value changes and the output value responds. This though somewhat tedious can help
you with timing analysis of your design.

Writing Testbench fixtures

Creating testbenches in Xilinx Testbencher does limit the types of tests as compared to
writing your own Verilog test fixtures. To create test fixtures that can utilize Verilog
functions such as $random and $display and Verilog’s recursive functions, you can create
Verilog test fixtures for the sources in your project by doing the following:

Adding Verilog Modules:

1) Go to Project New Source and then Select Verilog Test Fixture. Under File Name,
give the Verilog Tesst Fixture you want to create an appropriate name. * Note: names
should start with an alphabetic letter (meaning do NOT begin the name with a digit or
special character). For this tutorial, call the module “bit2adder_tf”. Click Next.

2) The next window that pops up asks you to specify the source file to associate the test
fixture with. Select the module “bit2adder”. Click next. Click finish.

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

11

3) The Verilog file should pop up and edit it from there. Code that declares the
module you want to test and its initial inputs should already be set for you. All
that is left for you to write is what and when to set values to.
Under the autoinitialize inputs definition is where you should start your code.
Most likely you will want to use an always block that looks like the following:
module testbench();
....
//initialize inputs
….
 ‘endif
//in this section you start your code.
//initialize inputs and other temp variables
reg [7:0] someTempReg;
//initial values to inputs
initial
 a = 0
 b = 0
always
#100 //time to wait between input changes
begin
 a = $random;
 b = 2;
 cin = $random;
 #100 //wait for outputs to settle
 $display(“just like c printf %d, %d, %d”, a, b, cin);
end
endmodule

Running the testfixture

Select the testfixture source in the Sources in Project window that you wish to simulate.
In our case, select bit2adder_tf.tf. Then in the Processes for Current Source window,
expand the ModelSim Simulator box. Double click Simulate Post-Place and Route
Verilog Module. This should load up ModelSim and the testfixture results. ModelSim by
default runs the testfixture for 1 ns.

Any calls to $display will print into ModelSim’s command prompt window.

Timing Analysis (Using Timing Analyzer)

Often you will want to analyze the timing delays and have more detailed timing
descriptions of your design. In this case you can run the Xilinx Timing Analyzer
program to analyze a source of your project.

First select the source in the Sources in Project window that you wish to analyze. In our
case, select bit2adder.v. Then in the Processes for Current Source window, expand the

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

12

Implement Design box, expand the Map box, expand the Generate Post-Map Static
Timing and then double-click Analyze Post-Map Static Timing(Timing Analyzer).

This should open up Xilinx Timing Analyzer.
In the toolbar, click on the Analyze against Autogenerated Design Constraints button:

This will open up a detailed timing report including path delays and maximum wire
delays for your design.

CS152 Spring 2003, Computer Architecture
 Professor John Kubiatowicz, Written by Ben Liao

13

	Initializing Inputs
	For each signal cell at a specific clock cycle, click on the cell to specify the value you want it to have starting at that clock cycle. You will have to type in the value you would like it to have if the signal is more than 1 bit, else the signal is 1
	Generating the Expected Simulation Output Values
	C) SIMULATING YOUR DESIGN

