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Abstract

Simulation is a critically important phase of modern computer hard-
ware design. Lacking practical formal methods for proving complex systems
correct, designers must run tests on simulation models to demonstrate cor-
rectness before chips and boards are fabricated. Using a large-scale model,
such as an entire CPU, at a low level of representation, such as the logic gate
level, is an efficient way to uncover the inevitable bugs in a complex design.
Testing efforts should aim at finding these bugs rather than passing a fixed
set of tests. Random generation of automatically checked tests effectively
applies computing power to the debugging process. Simulation “demons,”
which run alongside a test, help to find difficult bugs in the interactions of
subsystems. The methodological ideas discussed in this paper have been
used in several large projects at Digital.



1 Introduction

Simulation is an indispensable technique in modern computer design. In the
days of computers made entirely from off-the-shelf small- and medium-scale
integrated circuits it was possible to build a hardware prototype and “de-
bug it into existence,” but nowadays the use of highly integrated custom and
semi-custom components makes this practically impossible. These compo-
nents severely constrain hardware prototype debugging because it typically
takes a long, and sometimes very long, time to get a new version of a part
once a bug is discovered. Repeated re-fabrication of parts can delay a project
beyond its economic justification. It is therefore critically important to as-
sure the correctness of complex integrated-circuit designs before physical
fabrication. Simulation makes this possible.

In this paper I will present a set of opinions and recommendations
based on Digital’s experience with several large VAX system developments.
Methodological recommendations would ideally be validated by controlled
scientific experiment: one could imagine setting up two independent teams
with the same charter—design a computer system with specified cost, perfor-
mance, development schedule—but with different simulation methodologies.
Unfortunately, in the real world, with real constraints, such an experiment
would not be practical. So my views here come not from any systematic
evaluation of competing methodologies, but rather from real-world experi-
ence.

My subject in this paper is assuring the logical or functional correct-
ness of a newly-designed computer system’s hardware. 1 will not address
the companion problem of timing verification, for which modern techniques
(e.g., [10]) can guarantee correctness. No such guarantee is (as yet) pos-
sible in establishing the logical correctness of a complex system, although
some progress has been made with simple designs (e.g., [2, 8]). So the term
simulation in this paper will mean logical simulation only.

There are two fundamental challenges to the effective simulation of com-
plex computer hardware. First is the challenge of speed: simulations are
orders of magnitude slower than real hardware, so it is extremely important
for simulation to be efficient. Second is the challenge of correctness: since
formal methods are not yet practical for verifying the correctness of an entire
computer system, some testing scheme must be used to verify, or attempt
to verify, the design. To deal with the twin challenges of speed and correct-
ness, | advocate in this paper two basic methodological approaches: first,
the use of large-scale models using a detailed representation of the logic; and



second, a testing strategy that is organized around bugs found rather than
tests passed.

The next section of this paper argues that computer simulations should
use large models—for example, of an entire CPU or even an entire system—
at a low level of representation—for example, the level of individual gates
and latches. This approach might seem to exacerbate rather than mitigate
the problem of simulation speed, but I will try to show that it is the most
efficient use of the available resources: computer power, designers’ time, and
project schedule.

Section 3 considers two testing strategies that attempt to show the cor-
rectness of a design. The traditional method, which I call test-centered, relies
on a fixed list of tests that exercise the design thoroughly. I will argue that
this is the wrong way to test a model and advocate instead a more flexible
bug-centered strategy, which focuses on design bugs and their removal.

In Section 4 several ideas concerning random testing are presented, in-
cluding the use of simulation demons. The conclusion summarizes this pa-
per’s recommendations.

2 Levels of Modeling and Representation

In computer system design there is a natural hierarchy determined by phys-
ical boundaries: the system may be composed of several cabinets, each of
which contains printed-wiring boards, on which sit a number of integrated-
circuit chips. Complex chips will contain further levels of hierarchy. The
physical (and often logical) hierarchy is a convenient and natural way to
organize the design work and the implementation. Specifications and mod-
els can be created at a high level, then decomposed into smaller units and
parcelled out to the design team for further decomposition or for detailed
logic design. At higher levels, descriptions can have various degrees of pre-
cision and formality, but at the bottom level—the level communicated to
the factory—the requirement is a rigid and exact definition of the actual
hardware in all its details. Computer-Aided Design (CAD) tools integrate
elements from various levels in the hierarchy for timing analysis and logical
simulation.

It is common practice to carry this hierarchical viewpoint into the effort
of simulating a system design. In the specification phase of a project, the
designers write behavioral models of the hardware for which they were re-
sponsible. (A behavioral model is a simulatable representation whose input-



output behavior mimics that of the ultimate hardware, but within which
hardware detail is suppressed.) At each hierarchical level, these models
might be expressed as interconnections of lower-level components, on down
to the level of actual circuits. The simulation objective would then be to
show that each decomposition was correct—that each component was log-
ically equivalent to its implementation at the next lower hierarchical level.
For example, input-output test patterns for a VLSI chip could be captured
from its behavioral model and used to test the detailed hardware model as
it was developed. A low-level description of one chip could be simulated
with behavioral descriptions of other chips in a “mixed-mode” simulation
[9, 11, 13]. Execution efficiency might be obtained through independent
simulation of parts of the design, driven either by captured patterns, or
by direct simulation in the mixed-mode model, since behavioral models are
faster than gate-level models as a rule.

I believe that this top-down, hierarchical approach is the wrong way to
simulate computer systems. I advocate instead simulating a single integrated
large-scale model based on a complete detailed representation of the logic.
The most familiar and still quite widely used representation level is that of
logic gates and latches, but computer designers increasingly use various kinds
of automatic sythesis methods that elevate somewhat the level of logical
description [14]. T will use the phrase “gate level” to mean the lowest level
of description used by the logic designers, which should be the highest level
that can convincingly be shown to be logically equivalent to the circuits
actually fabricated.

The hierarchical approach requires extra designer time, exposes the de-
sign to late discovery of subtle bugs, and hence can delay the project sched-
ule. Before discussing these effects, let me point out three characteristics
of most (industrial) development environments that strongly affect method-
ological decisions:

1. designer time is the single most precious resource in the entire effort;

2. computational resources—compute cycles, memory, disks—are plenti-
ful, relative to designer time; and

3. project schedule is the most important constraint.

These factors mean that project managers should be willing to make trade-
offs of computing resources for designer resources, and that they should want
to use calendar time as efficiently as possible.



The first problem with the top-down, hierarchical, mixed-mode approach
is that engineers must create and maintain behavioral models with detailed
interface specifications, in addition to doing the actual logic design. De-
velopment projects should instead substitute computer power for this extra
design effort: gate-level models (or the equivalent) should be the only sim-
ulatable description of the design. This allows logic design to begin sooner
and frees the designer from the responsibility of maintaining two or more
models of the same piece of logic.

Another problem with the hierarchical approach is the difficulty of in-
dependently simulating separate parts. Unless there is an accurate set of
good input-output patterns captured from a higher-level model, the designer
must somehow generate inputs and check outputs of the designer’s part of
the logic. At many levels these “test vectors” can be quite inscrutable and
very large. Furthermore, it is easy to see how two designers of interacting
pieces of logic might have subtle differences in their understandings of the
interface, each believing their design to be correct. An integrated behav-
ioral model can take care of these difficulties only if it is exquisitely detailed:
more time, more effort!

A third problem with this approach is accuracy: how can the designer be
sure that the logic matches its behavioral description in every detail? And
a fourth problem is the sacrifice of partitioning flexibility, about which more
below.

Gate-level models of the entire CPU or system address all of these prob-
lems. By “system” I mean a substantial collection of hardware: my own
group has used models that include multiple CPUs, main memory boards
and buses, I/O adapters, I/O buses, simplified models of I/O devices, and
even a console interface. Our goal has been to simulate together all of the
new hardware the group is designing.

Gate-level models are derived directly from the designers’ own specifica-
tion of the logic (remember that this is sometimes in the form of Boolean
equations or other abstract descriptions—one need not draw actual logic
gates for everything). Hence there is no possibility of the simulation model
disagreeing with the actual design. With multiple-model methods there is
always this risk. “If you want two things to be the same,”
our engineers, “then only have one thing.”

But what about the problem of speed? It is certainly true that a large-
scale, gate-level model will run much more slowly than an abstract behav-
ioral model. When will this be a problem? A simulation model is fast enough
when it is turning up bugs at least as fast as they can be fixed by the design-
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ers. Conversely, a model is too slow only when it becomes the bottleneck in
the debugging process. But when during the project is this likely to happen?
Digital’s VAX experience [3, 4] strongly suggests that it is likely to happen
when the bugs are subtle and difficult, requiring complicated stimulus, in-
tensive subsystem interaction, and the simultaneous occurrence of unusual
events. And it is precisely then that the big, detailed model is most needed,
for only it expresses the exact logical behavior of the system under these
extreme conditions.

Gate-level simulation of a large-scale model can be thought of as a brute-
force substitution of processing power and main memory capacity for design-
ers” brain power and time [15]. In the industrial environment it is usually
easier to apply more computer power than more brain power to this problem.

Partitioning flexibility is lost to some degree in the hierarchical approach.
Early specification of the behavior and interfaces of the parts makes it rela-
tively more cumbersome to change the location of some piece of functionality.
The brute approach of a single gate-level model allows more flexibility. Not
only can changes be made more quickly, but knowing in advance that one
will simulate (and timing-verify) this way allows the designers to adopt a
looser attitude toward interface definitions, which in turn enables them to
start the detailed design work earlier [15]. (Of course, more formal up-front
interface design can improve the initial quality of the interface; this benefit
is outweighed in my view by the disadvantages of this approach.)

Partitioning flexibility is also important when timing or other physical
or electrical design considerations (pins, power, area) force repartitioning.
Pure top-down methods may not even be able to express these constraints at
higher levels. In some cases, too, when working with advanced technology,
physical and electrical parameters can change late in the game; when this
happens easy repartitioning is quite valuable.

An extraordinary advantage of a CPU-level (or higher-level ) model, whether
represented behaviorally or at the gate level, is that it is essentially a very
slow computer, and its stimulus is an ordinary computer program. Numer-
ous benefits follow. First, no knowledge of the hardware details is required
for a person to run a test program on a simulated CPU. This greatly enlarges
the population of competent model testers. Hardware expertise is only re-
quired when a test program goes astray. Another benefit is that (for existing
instruction-set architectures) there is a ready standard of comparison and a
plentiful supply of already written test programs: any program that doesn’t
run for very long is a candidate. A third benefit is that a program can check
its own answer. The problem of checking the output of a simulation is quite



serious, the more so when the volume of tests is large, as it must be for the
systems under discussion. Inevitably one needs some other model against
which to compare the output. A self-checking program in essence computes
some value in two different ways, checking for internal architectural consis-
tency rather than using a separate model for comparison. This procedure
will not catch all bugs, of course.

A final advantage of big-model simulation comes from the empirical ob-
servation that in using these models, designers often discover bugs in parts
of the logic other than the ones they are testing. As I will argue in the next
section, these serendipitous bug discoveries should be highly valued.

The orderly construction of a large model will clearly entail some sim-
ulation of its lower-level parts; I do not mean to prohibit small models
absolutely. Indeed, too-early use of a large-scale model can be a very in-
efficient way to find simple bugs in small components. A modest amount
of independent simulation of smaller units should be done to assure basic
functionality before integration into a larger model.

Neither do I mean to imply that large-scale models should represent logic
at a level of detail finer than that used by the designers. At some point,
trusted translation tools transform the designers’ logical description into an
exact physical specification of the circuits. Simulation of individual transis-
tors and the like is certainly required to certify the logical components used
by the designers, but it can safely be done in the small. When logic synthesis
is used, the correctness of the translation must be rigorously established if
a higher-level representation is to be simulated.

One way to think about my dual recommendations is the following. Sim-
ulation of large-scale models attacks bugs in the design of a system, whereas
simulation using low-level representation attacks bugs in the implementation
of that design. (Things are not quite this pure, of course.) A big model,
even if composed of abstract behavioral elements, can uncover design flaws:
for example, the bus protocol handles a certain case improperly. Gate-level
simulation, even of small pieces of the design, can uncover implementation
flaws: for example, these three gates do not express the designer’s intent.
Together, these approaches constitute a powerful method for doing both at
once, a method that efficiently uses the available resources of designer effort,
computer power, and calendar time.



3 Passing Tests versus Finding Bugs

So we can now imagine a large-scale model based directly on the designers’
lowest-level specification of the design. It can simulate, albeit at a somewhat
slower speed, anything the real machine could do. In the design lurk some
unknown number of bugs. How best to find them? In this section I will
explore two possible approaches and then discuss the question of knowing
how much simulation is enough. (Much of the material in this section is
drawn from an earlier paper [4].)

Efficient simulation is important because simulation is expensive. In
one CPU development project at Digital [5], the simulation ratio, that is,
the ratio of the speed of the real machine to the speed of its system-level
simulation, was 300 million to one. That means that to simulate just one
second of target machine time, the simulation model would have to run
around the clock for ten years.

The traditional or test-centered approach to simulation works as follows.
A (long) list of tests is created, one for each identifiable function of the
system; these tests should ideally “cover” the design, that is, exercise all
of its parts in a balanced way. The tests are then simulated on the model.
When tests fail, bugs are uncovered and repaired. Progress is measured
against the list: the number of tests that pass is a measure of the goodness
of the design. When all the tests pass, the design is regarded as correct, and
parts can be released for fabrication.

This approach has several attractive features. It provides a definite plan
of attack (the list), which allows a rational allocation of human and com-
putational resources to the simulation task. It provides a clear measure of
progress: how many tests pass? The remainder are a measure of the work
left to do. And finally, the test-centered approach provides an unambiguous
ending criterion: when all the tests run correctly, simulation is complete and
hardware fabrication can begin.

So what is wrong with this attractive approach? Simply this: passing all
the tests on the list does not demonstrate that any other single test will be
able to pass. In essence this approach guarantees that fabricated hardware
will pass exactly—and perhaps only—those tests on the list.

The test-centered approach simply has the wrong focus, for no amount
of testing can guarantee the perfect correctness of a design. As Dijkstra said
in another context, “testing can be used to show the presence of bugs, but
never to show their absence!” [7] A computer system is just too complex to
test completely. Although any computer is in principle just a huge finite-



state machine with a finite number of possible programs that could ever be
run, the number of states and state-transitions and programs might as well
be infinite. Exhaustive testing is out of the question, and furthermore there
is no representative subset of tests which, if passed, will demonstrate perfect
correctness. We can aspire to test only a tiny fraction of the system’s entire
behavior.

Happily, we only need to test a tiny fraction to find all the bugs. The
trick is to test the right tiny fraction! When simulation begins there is some
unknown number of bugs in the design; let B be the number. (Digital’s
experience suggests that for VAX designs B is on the order of one thousand.)
There is a huge but finite number of test programs that could be run. Every
bug can be exposed by at least one test, and some tests expose multiple
bugs. In principle, no more than B tests need to be simulated to remove all
the bugs (neglecting any new bugs that might be introduced in the repair
process). There are, of course, many many sets of B or fewer tests, each
capable of doing this. The strategic objective of system simulation should
be obvious: minimize the number of tests run while maximizing the chance
that some one of these special sets of B tests is among the ones actually
run. There is little reason to think that any fixed list of tests constructed a
priori will contain one of the desired sets.

“Regression testing” is a particularly wrong-headed example of the test-
centered approach. It means re-running old tests after a change or bug-repair
to the design, in order to make sure the design has not “regressed” or lost
any abilities it once had. A particularly slavish adherence to this idea would
have all old tests re-run after every design change.

If testing were free this might be all right, but in the hardware simulation
environment, testing is far from free. If the tester asked “what test is most
likely to uncover a design bug?” the answer would almost never be one of
the tests in the regression suite. A test that has passed before is highly
likely to pass again. Looking for new tests to uncover new bugs is what the
bug-oriented tester would do. Regression testing is a way to get good tests,
not a bug-free design; it may also encourage a false sense of confidence in
the design’s correctness.

“Design verification” is the traditional name for the phase of a project
devoted to demonstrating the correctness of a fully specified design. But it
should be self-evident that any design is most certainly not correct when this
activity starts and possibly even when it ends. How can an incorrect design
be “verified”? Perhaps a better name for this phase of a project would be
design falsification. The object should not be to show that the design works



(for it surely doesn’t), but to show exactly how it does not.

In other words, the object should be to find bugs, not to pass tests.
Design verification is a gradually developing side effect of the process of
design falsification: as falsification becomes more and more difficult, the
design comes closer and closer to being correct. Testing and debugging
should be oriented around the bugs themselves; hence the notion of bug-
centered simulation. To find a bug it is best to be looking for one. Passing
a test—getting the intended result—does not advance this effort one bit.

Indeed, following Myers, who made this observation in the context of
software testing [12], we should call such a test a failure. If a test gets an
incorrect result and thereby uncovers a bug, we should call it a success. This
apparently backward way of looking at things is very useful, especially in
the hardware simulation environment, where testing is so costly.

A focus on bugs will orient testing away from rigid procedures intended
for thorough functional coverage, and towards a flexible approach that ap-
plies tests in areas most likely to contain bugs. These include especially:

e areas of unusual logical complexity;
e interfaces between parts designed by different people or groups;

e parts of the design that deal with rarely-exercised functionality (for
example, error-detection circuits);

e and, paradoxically, parts of the design that have already yielded many
bugs.

Rather then follow a fixed list of test cases, testing efforts should adapt to
the empirical situation: testing methods that do not find bugs should be
abandoned in favor of methods that do.

Underlying these efforts should be a fundamentally positive attitude to-
ward bugs. Unfortunately it is more natural for design engineers (and their
managers!) to see a bug as a defect or a failure. Particularly in times of
schedule pressure it is difficult to imagine that finding a bug is a good thing.
It is quite understandable that an engineer might be ashamed of a bug, or
try to deny it, or hope that its true location is in someone else’s logic, or
concentrate on portions of the design that function correctly rather than
ones that don’t.

The design engineer wants to show that the design works; it is quite
unnatural to take pleasure in a demonstration that it really doesn’t. Yet
this is exactly the attitude that engineering management should encourage.



Finding a bug should be a cause for celebration. Ilach discovery is a small
victory; each marks an incremental improvement in the design. A complex
design always has bugs. The only question is whether they are found now
or later, and now is always better.

One way to deal with the natural tendency of a design engineer to resist
bugs is to give the testing job to somebody else. In one group at Digital [3]
a team separate from the designers helps build simulation models and then
creates and runs tests. A similar arrangement is also common in software
companies, where the Quality Assurance department or its equivalent is in
charge of testing. (Such groups have the luxury of running their tests at
full speed, of course.) But having a separate testing team is no guarantee
of success: such a team might fall into the test-centered trap itself.

It is quite difficult to predict which testing methods will in fact find bugs.
Planning for the design falsification phase of a project is hampered by this
fact and by the uncertainty over how many bugs there are. (One Digital
engineering manager called this project phase the “Twilight Zone”!) The
bug-centered approach urges flexibility in testing. Whatever the plan says,
the design or testing team must be prepared to abandon methods that do
not find bugs and in their place expand and promote methods that do.

A bug is an opportunity to learn about the design, and can lead the
designer to other bugs (called “cousin bugs” by Sherwood [3]). Upon finding
a bug, the designer or debuger should try to generalize in various ways by
asking questions like these:

e [s this bug an instance of a more general problem?
e Does this same bug occur in any other parts of the design?

e Can the same test find more bugs? Are there any enhancements to
the test suggested by this bug?

e Does this bug mask some other bug?
e What other similar tests could be run?

e Why was it not caught earlier? Is there a coverage hole, or is a new
test needed?

e How did it get into the design? Was it, for example, due to designer
misconception, an ambiguity or error in a design specification, a failure
of some CAD tool? (Beware of assigning blame, however.)

10



The bug-centered strategy, which sometimes goes by the shorthand phrase
“bugs are good” at Digital, is slowly taking hold within the company. There
remain, however, many groups that operate in a test-centered way, running
and re-running their regression tests. The attachment these groups have
to the traditional approach comes largely from its clear endpoint: when all
the tests pass, testing is done. There may still be bugs, of course, but the
management milestone has been met. How can a bug-centered group decide
that enough testing has been done? And how can its progress be measured?

To measure progress, bug-centered testers should not count the number
of tests passed, but should instead watch the bug discovery rate. In several
projects my group has used a low-overhead but high-visibility bug-counting
method. Engineers simply marked a centrally posted sheet with a tick-mark
for each bug they found. Elaborate, comprehensive, computer-aided bug
reports were explicitly not used, because we felt that the attendant visibility
and overhead would discourage candid reporting, particularly of bugs found
by their own creators. The bug tallies were updated weekly, and a plot of
the rate centrally displayed.

Fabrication release decisions should not be made until this rate drops to
a level low enough to establish confidence in the design. With a steady (or
increasing!) rate of bug discovery, there is no evidence that the end might
be near—mnone whatever. It is necessary that the rate decline in the face
of determined, creative, flexible bug-finding attack. Ideally one would wait
until the rate was actually zero for some considerable time. What exactly
a “low” rate means is determined by the parameters of the fabrication pro-
cess and the economics of the project. Low might mean very very low if
the fabrication time is long, or cost high. A higher value of “low” can be
tolerated if quick turnaround of new designs is available. In designs that
contain a number of separately manufactured pieces, one can try to release
first those pieces that have been bug-free the longest. Release decisions are
in the end a question of judgment and risk: experience with prior projects,
confidence in the design, and willingness to take risks with remaining bugs
will determine when designs are released. There can be few hard and fast
rules in this area.

One rule does seem clear, however: one should not release logic that has
never been tested! It is important to do some kind of coverage measurement
during simulation [11]. (The well studied area of fault coverage is not what I
mean here. Fault coverage addresses the ability of a test to uncover physical
failure of the implementation, not the design flaws we are discussing.) For
example, one simple measurement is to record which signals have taken on
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both logical 0 and 1 values at some point during some test. Now of course
mere coverage does not show correctness. A fully-exercised design can still
have bugs, so the temptation to stop simulating once some desired level of
coverage is reached must be firmly resisted. But a lack of coverage of some
piece of logic means that any bugs that might be there have certainly not
been found. Coverage measurement should be thought of as a way to find
uncovered logic, rather than as a way to establish confidence in covered logic.
Uncovered logic needs new tests.

When the bug discovery rate finally does fall off, it is important to in-
vestigate the reason. It may be that there are in fact very few bugs left
in the design. But it may also be that the particular testing methods then
in use are faltering. If this is so, new methods, perhaps more intensive or
complex ones, should be quickly brought to bear. We do not want the bug
rate to decline slowly; we would much prefer a precipitate drop from a high
rate when there are in fact very few bugs left.

4 Random Testing

When the space of possible behaviors is too vast to test exhaustively (as
is obviously the case for computer systems), some method must guide the
selection of tests. Omne way to do this is directed testing, in which some
human intention controls the selection. This is an important method for
areas of the design with a high a priori chance of yielding bugs, but if used
universally, it leaves open the possibility that unselected tests might reveal
bugs. And of course it is quite likely that some behavior not fully considered
by the designers, and hence not exercised by the chosen tests, might yield a
bug.

Put the other way, any design bug that does show up after fabrication
is proof that some important test was never simulated.

The method I advocate for dealing with the problem of a huge space
of behaviors is to sample randomly (really pseudo-randomly) from one or
more sets of possible tests. A random selection can pick any test with some
probability, and the longer a random test-selector runs, the more likely it is
that any particular test will be found.

Sometimes it is desirable to have a completely unbiased selection, so that
all tests (from some specified set) are chosen with equal probability. This
is clearly the right thing to do if one has absolutely no idea where the bugs
might be. Sometimes, however, it may be important to bias the selection in
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some known way. This bias enables the tester to focus on a particular subset
of the test space. (I use terms like “space” and “probability” and “bias”
here with conscious informality. No one would actually define the “space”
of possible behaviors or enumerate all possible test programs. The ideas
become clearer when expressed in this language, but in actual application
the details behind the suggestive terminology are never worked out.) For
example, to test the floating-point logic one might want to bias the selection
of input data toward numerical boundary conditions of various kinds. Or
perhaps at the beginning of simulation one might bias the selection toward
very simple tests, leaving the more complex choices until bugs in the basic
functionality had been found.

What must never be done, however, is to bias the selection is such a way
that some important subspace of possible tests is sampled with probability
zero!

Random testing implies that a huge volume of tests will be simulated
(and also that you’d better have a fearsome computing armamentarium to
run the simulations). This in turn has two consequences: first, the tests
must be automatically generated; and second, the results of each test must
be automatically checked. Manual generation and checking are simply out of
the question unless the hardware is trivial and the volume of testing small.

An example of an automatic random tester is the AXE architectural
exerciser used at Digital to test VAX implementations, both in simulation
and in real hardware [1, 6]. The strict level of architectural compatibility
demanded of VAX family members—essentially this: that all legitimate pro-
grams must get the same answer on all VAXes without recompiling—yields
a ready standard of comparison.

AXE compares two VAX implementations by generating random instruc-
tions, running them on both implementations, and noting any differences in
the results. It makes a random choice of opcode, picks some random operand
specifiers, drops random data into random locations in memory, and ar-
ranges for a random selection of architectural impediments such as page
faults, arithmetic exceptions, traps, and the like. AXE’s random choices
can be constrained by the user in various ways; the user might want AXE
to pick only certain opcodes, for example. The “case” AXE generates is run
on the target machine (a simulation model) and on a known standard VAX
(usually the simulation engine itself) and the results are compared in de-
tail. AXE looks at the instruction’s actual result, of course, but also checks
all register contents, condition codes, relevant memory locations, and the
correct handling of any exceptions the case provoked.
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AXE, originally developed to certify new hardware, is now also used in
every VAX CPU simulation. It has proven to be an excellent bug-finder and
is being enhanced to generate multiple-instruction cases.

When the designers suspect that some parts of the system are more
likely than others to contain bugs, they can focus testing by biasing the
random test selection, as discussed above. Another way to focus is to use
a simulation demon. A demon is an autonomous source of interference in
a simulation. A common type of demon takes the place of one system
component while another, usually a CPU, runs a test. The idea is that
by generating extra functional interactions, a demon can flush out lurking
bugs. It can be implemented as a simple behavioral (that is, not gate-level)
simulation of a system component, with its own source of stimulus.

A Hamming demon, for example, might randomly drop bad bits into
data fetched out of an ECC-protected memory by a simulated CPU. A bus
demon might generate random (but legitimate) bus transactions while the
connected CPU runs a self-checking test that also uses the bus.

Some demons are useful because they bias the random selection of system-
level test cases in the direction of high subsystem interaction. Experience
teaches that system bugs often occur in these interactions, which lack the
architectural clarity of specification found in, say, floating-point hardware
or caches or instruction sets. Other demons, like the Hamming demon, force
error conditions at unplanned times, another traditional source of bugs.

A demon, in this formulation, does not check its own answers. Instead
it relies on the self-checking test running in the CPU to be affected by any
bug it turns up. This will not always happen. A thorough check of all
the outcomes of a demon’s interference might find a failure not visible to
the particular test running in the CPU. In some simulation environments,
intensive checking of this kind may well be advisable.

Demons can themselves generate random activity, or use a particular
type of stimulus generated according to some fixed scheme, since the desired
randomness can come from the main self-checking test.

Here are some examples of demons that have been used over roughly
the last six years in various VAX simulation efforts. All assume that a self-
checking test (often AXE) is running on one processor, and that any errors
will be reflected in some failure of the check.

1. System bus demon. In shared-memory multiprocessors there are sev-
eral players on the main system bus: processors, memories, and 1/0
adapters. Several projects have used bus demons to take the place of
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one or more of these players and increase the level of bus traffic in the
simulation.

. 1/O bus demon. Here the demon sits on a simulated I/O bus pretend-
ing to be some sort of I/O device.

. Clock demon. One project used a clock demon to turn off non-memory
clocks at random times and for random intervals, mimicking what
would happen when actual hardware clocks were stopped and restarted
from the system console. (Memory clocks were needed to prevent
volatile DRAMs from forgetting.)

. Stall demon. Stalls occur when one part of the computer can’t make
progress due to a lack of response from, or contention against, some
other part. A typical implementation is to block the clocks of the first
part while letting the second part proceed until the original reason for
stalling is removed. A common example: the first part is the processor,
the second part is the cache, and the processor stalls during a cache
miss. A stall demon drops in stalls of random (but legitimate) duration
at random (legitimate) times.

. Error demon. Some projects have used demons that randomly cause
hardware errors in the simulation model. Things like single-bit errors
in ECC-protected memory should be transparent, while more serious
errors in less protected domains may have more serious consequences.
Sometimes such consequences (operating-system intervention, for ex-
ample) must be checked by more serious methods too.

There is no reason not to run multiple demons simultaneously. When

simulation is turning up few bugs, the use of more and nastier demons may
expose especially obscure bugs.

5 Conclusion

In this paper I have presented a set of recommendations concerning computer
hardware simulation. Methodological ideas, especially those involving big
projects with real-world constraints, cannot easily be subjected to rigorous
scientific scrutiny. I can claim only logic and experience as supports for my
prescription, which in barest essence is this:
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e Simulate the lowest level of representation used by the logic designers
(e.g., the gate or logic equation level).

e As soon as the basic functionality of the system parts has been tested
independently, integrate the parts into a large-scale model such as a
CPU or even an entire system. Use this model for most simulation.

e Remember that bugs are good: organize the effort around finding the
bugs rather than passing the tests.

o Userandomly selected, automatically generated, automatically checked
or self-checking tests.

e Use simulation demons to focus stimulus on subsystem interactions, a
traditional source of difficult bugs.

o Measure coverage of the logic during simulation and add tests or test
methods for areas that lack good coverage. Do not stop simulating
when some predetermined coverage level is reached.

o Release designs for fabrication only when the bug discovery rate is low
(despite determined efforts to raise it), and not when some precon-
ceived list of tests is passed.

¢ Do not stop simulating just because the parts have been released!
Simulation is never done. A bug found during fabrication is one less
bug to find in the prototype.

In a sense one could say that the reason we do extensive simulation of
computer system hardware is that we don’t know any better. We would
much prefer to have the ability to produce bug-free designs to begin with,
or to have formal proof methods capable of verifying big systems, or to have
rigorous testing regimes that could certify correctness. We can certainly
hope that the increasing use of logic synthesis techniques [14] will result
in designs with fewer bugs. We can also hope that hardware verification
methods of various kinds [2, 8] will be able to handle ever-larger and more
complex structures. But for the present, simulation is our lot, and we need
to do it well.
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