HW3 Solutions

Version 1.0 – updated 10/26/2003 Email <u>cs152-td@.cory</u> with corrections or questions.

7.7

1 miss, 4 miss, 8 miss, 5 miss, 20 miss, 17 miss, 56 miss, 9 miss, 19 miss, 11 miss, 4 miss, 43 miss, 5 hit, 6 miss, 9hit, 17 hit

т	Casha blash
Tag	Cache block
1	17 hit
1	19
0	4
0	5 hit
0	6
3	56
0	9 hit
2	43

7.9

of bits required is : (128+16+1)*4k=580k

7.11

For organization a, miss penalty is 16*(10+1)=176 cycles For organization b, miss penalty is 4*(10+1)=44 cycles For organization c, miss penalty is 4*10+4*4=56 cycles

7.15

AMAT = 1*2+0.05*20*2=4ns

7.16

AMAT=1.2*2+0.03*20*2=3.6ns

The AMAT is improved by 10% but double the size of the cache. Probably it is a good tradeoff.

7.18

 $x*(1+32-\log 2(x)-2+32) <= 18*32*8*1024 bits => x <= 85595.6$ => we need cache line $\log 2(x)=16.38$ so set cache line size is $2^{16}=64k$, Thus 8 of 32Kx8bits SRAM will be used for cache data storage, which is 64k words. The # of tag bits is 32-16-2=14 bits. The tag and valid bit consumes 15bits*64k=32k*30bits, which needs 432kx8 bit SRAM.

7.23

One example is the following memory address references: Assuming that cache size is 16, the address is word address and each cache block is one word.

1, 2, 17, 33, 1,2

for 2-way associative cache, 1 miss, 2 miss, 17 miss(kick out 1), 33 miss(kick out 2), 1 miss, 2 miss for directed map cache, 1 miss, 2 miss, 17 miss(kick out 1), 33miss(kick out 17), 1 miss, 2 hit

7.27

CPI= CPI_{hit+}miss rate*miss penalty

For cache 1:

For cache 2:

For cache 3:

Cache 1 spends the most cycles on cache miss