CS152 Fall 2003 — David Patterson
Homework 2 Solutions
V1.1 — Updated 10/7/2003

Send comments and corrections to Kurt.

10/7/2003: Finished the remaining problems. 6.7 probably has a typo.

4.13:

If the top bt of A lower is a 0, no sign extension will occur, so A_upper_adjusted
= A_upper. However, if the top bit of A lower is a 1, then A lower will be sign extended
as an offset. This sign extension will place the value OxFFFF in the upper bits of the 32-
bit A lower. Of course, OXFFFF is just —1, so we need to add one to A_upper in order to
cancel out the —1 from the OXFFFF. The result: A upper adjusted = A _upper + 1.

4.23:
ZZ| eratio
Carryln
: — LA
s/
¥ >
'—’JI_..-/ 1
[ > * Result
b — 0 N )
——
1
Less o 3
\_/
D——r Sel
L . ] ¥
Overflow
detaction — Dverflow
5.2:
Signal fault Effect Will break

RegDst=Constant 1

Mem writes always go to
$rd

Lw (since it uses rt)

ALUSrc = Constant 1

2" input to Alu is always
immediate

Any R-format/beq

MemToReg = Constant 1

Result of Alu is always

Any R-format




treated as a Mem pointer

Zero = Constant 1 All branches are taken Any branch
5.11:

BEQ |]J LW SW ADD [SUB | AND | OR SLT
MemToReg | X X 1 X 0 0 0 0 0
ALUSrc 0 X 1 1 0 0 0 0 0
RegDst X X 0 X 1 1 1 1 1
Branch 1 X 0 0 0 0 0 0 0
MemToReg = ALUSrc;
RegDst = NOT( AluSrc);

There are all sorts of other combinations ....
5.17:

Datapth additions in blue:

-

EF




5:20:

The jump memory instruction behaves much like a load word until the memory is read.
The data coming out of memory needs to be deposited into the PC. This will require a
new input to the multiplexor controlled by PCSource. We add a new state coming off of
state 3 that checks for Op = “jump memory™ (and modify the transition to state 4 to

ensure Op = “lw”). The new state has PCWrite, PCSource = 11. The transitions to states
2 and 3 need to also include Op = “jump memory.”

5.27:



Block Copy - Multicyle & Microcode

Lsing the multicyele datapath from the textbook (Fig 5.33) changes are made below in
aqua dashed lines. The basic RTL for the block copy instruction using this modified
datapath is also referenced below. When instruction is fetched you have register 5tl, St2,
and $t3. Make sure that the instruction register has a write enable so that the register file
addresses are kept around. First you want to read R(5t1) and R(5t2) and get these values
into the register for Regl Data (register A) and Reg2Data (register B). Make sure these
registers have write enables also. Next vou want to use the value in register A to be used
as address for memory to get the first value to be copied. At the same time you can use
increment the register A value using the ALUL In the next cycle you can write the value
back to memory using the memory address in register B. At the same you can write the
newly incremented source address back into the register file, and use the ALU to
increment the destination address in register B, and to get the length of the array into
register A. In this final step you can write the value of incremented destination address
back into the reglile. In the same cycle you can also decrement the length by one and
check to see if'it’s negative. If so then block copy 1s done, 1f not it needs to write the
length back into the register file and continue the loop. Another way is to store the length
in it’s own separate register (RegC, not shown in diagram), instead of ALUout, so that
you won't need to write it back into the regfile. This saves you a cycle on every loop.

[n hardware it would take 4cveles for the last loop + (Scyeles)®(length -1) + 2eveles for
instruction fetch and decode. The five cveles for the loop comes from having to store the
length back into R(33). [If use extra register (Reg(’) to store length, instead of storing it
to ALUout then to R($3); it"s just (4deyeles)*(length) + 2eyeles.| In the software version it
would take 3cyeles for the beq + (length-1)*(24cyceles). The 24 cycles are based on the
multicycle state diagram (Fig 5.42) where lw is Scycles, sw is deyeles, each addi 1s 4
cycles, and branch is 3eyeles. (e, S+H44H(4%3)43)

Basic RTL for Block Copy:
regA < - R(5tl), regB =- R(512)
MemDataReg <- M(regA ), ALUout «- regA +4

Mem «- MemDataReg at M{regB), R(5t1) <- ALUout, Al.Uout «- regB + 4, regA < -
R{5t3)
R(5t2) < - ALUout, ALUout < - regh - 1, decide if should loop again

PC

Bt Dot

il 2 || ™ a1 et ez 0 .
ldeal Memory El o Rag ALL |
T zad i
Z 4 RenlDal
S

.
pU

i n.J : .
™ Extendet

LS MR TIE BT

o
e




5.28:

Mem <- MemDataReg at M(regB), Ri5t1) <- ALUout, ALUout < - regB

Ri{5t3)

Ri512) =- AlLUout, ALUout = - regh - 1, decide if should loop again

F4, regh < -

PC

[

il
Ideal M::llm'y

]
|
2
=
bl
t
S
£l
=
x
El
¥
E

1Ad Rﬂhﬁ{f:ﬂflﬂ

i ]
ZAd
Wriap

el -.J

i Extender

ALL
out

6.2:
add 52,53, %4
add ; 5
add

6.3:
addi $3.%534

loop: Iw 52, 96(%3)
l‘lL‘L] 5354 1oo [
addi $3.%534

6.7:

Cycle 5: PC=516:

IFID.Inst
IFID.NextPC

IDEX.NextPC
IDEX.Regwrite
IDEX.MemToReg
IDEX.Branch
IDEX.MemRead
IDEX .MemWrite
IDEX.RegDst
IDEX.ALUOp
IDEX.ALUSrc

= (or $13 $6 $7)
=516



IDEX.A =14

IDEX.B =15

IDEX.signlmm = 0x00006024
IDEX.RegRT =5

IDEX.RegRD =12

EXMEM.NextPC =508 + (0x00005822 *4)

EXMEM.RegWrite =1
EXMEM.MemToReg =0
EXMEM.Branch =0
EXMEM.MemRead =0
EXMEM.MemWrite =0
EXMEM.ALUOut =-1
EXMEM.Zero =0
EXMEM.WriteData =13
EXMEM.RegDest =11

MEMWB.NextPC =584
MEMWB.RegWrite =1
MEMWB.MemToReg= 1
MEMWB.ReadData = 1031
MEMWB.ALUOut =31
MEMWB.RegDst =10

6.27:
Branch should be resolved in 1D stage. Forward the results right before EX/MEM and MEM/WEB
pipeling registers to 1D stage.

Question 1:

5 §7. [O0(52)

lw 58, 100 52)

no hazard for this case for the Mem write 1s commited in MEM stage not in WB stage while the
the instrucitons involving registers commit results in the WB stage, which makes the forwarding

necessary.

Question 2:



[w 52, 100{5%5)
W 2. 100(56)

forwarding can be done as following:
[TIMEMWEB.RegWrite and (MEM/WB.RegisterRd!=(0)
And (MEM/WR. RegisterRd= = EX/MEM.RegisterRt) ) Forward=01

67 23

[w 53,
add £7.
[w 54,
add 58
SW S,
add 10,

beg 510,

0.26

beg 51,

Iw 53,

add 53,

AW 53,
target:  or 510,

0(%5)

57, 53

4(%5)

S8, 5d .
0($5) Sl
57, 58

511, Loop

52, target

4 %4y

B3, B3

454

51, 512

it is possible to have stall and flush simultanecusly. Since in the pipeline figt. 51, the only stall
source will be in 1D stage, it is ok to stall pipeline in the 1F and 11 stage while flush later stages.



