Lab Lecture for Lab #4 Pipelining Your Processor

Jack Kang cs152-ta@imail.eecs.berkeley.edu

Fall 2003 © UCB

A Pipelined Processor

CS 152 Lab Lecture (2) Fall 2003 © UCB

Memory-Mapped IO

- Any store or writes to memory when the top address bit is 1 will write to your Memory-Mapped IO rather than normal memory.
 - Allows us to display information to HEX LEDs using SW
 - Allows us to take input from the board using LW
 - During simulation, the I/O space is simulated by using text files.

CS 152 Lab Lecture (3)

Memory-Mapped IO

Cal

CS 152 Lab Lecture (4) Fall 2003 © UCB

Memory-Mapped IO

- Internally, there are only 2 registers.
- The only two valid addresses you can write to are 0xFFFFFF0 and 0xFFFFFF4.
 - Note that 0xFFFFFF4 is -12....
- Other writes to memio can be ignored.
- You may want to make use of the Verilog syntax:
 - `ifdef synthesis, `else, `endif

Fall 2003 © UCB

Adding the Multiplier

- The multiplier is a "coprocessor"
 - It executes on its own, and the processor doesn't stall unless it gets another multu, mfhi, or mflo.
 - What signal do we need to add to allow the processor to stall?
 - What stage do we send the signals to the multiplier?

CS 152 Lab Lecture (6) Fall 2003 © UCB

The Break Instruction

- The number following the break instruction (in this case 5), is placed into the Code segment of the instruction.
- You need to display the lower 7 bits of these numbers as part of the STAT signal during a break.
- Your processor should stall until it receives an external signal called "release." Release is a debounced input from the board. What about simulation??

CS 152 Lab Lecture (7) Fall 2003 © UCB

Synchronous Memory

- This lab uses synchronous memory.
 - Synchronous writes—just like last time
 - Synchronous reads—NOT LIKE LAST
 TIME
 - Address/control inputs to your memory have to be ready <u>before</u> the posedge of the cycle you want the results!
 - Why can't we use synchronous reads in the single-cycle processor?

CS 152 Lab Lecture (8) Fall 2003 © UCB

Synchronous Memory

CS 152 Lab Lecture (9) Fall 2003 © UCB

Single Stepped Clock

Schematics

CS 152 Lab Lecture (11) Fall 2003 © UCB

Board Connections

CS 152 Lab Lecture (12) Fall 2003 © UCB