
CS 152 Lab 5 Lecture (1) Jack Kang Fall 2003 © UCB

Lab Lecture for Lab #5
Caches and Real Memory

Jack Kang
cs152-ta@imail.eecs.berkeley.edu



CS 152 Lab 5 Lecture (2) Jack Kang Fall 2003 © UCB

DRAM Controller

• We are giving you a working module that 
will handle initialization, do 1 word burst, 
1 word reads, and auto refresh.

• Do what you wish with this module.
• Thank Professor Patterson for this.

– He’s probably watching the webcast as we 
speak.

• You are still responsible for reading and 
understanding the RAM.

• Simulation file called mt48lc8m16a2.v



CS 152 Lab 5 Lecture (3) Jack Kang Fall 2003 © UCB

Write Buffer

• If we have a write-through scheme, how 
slow are writes to cache??
– We’re forced to stall, even though there are 

no dependencies in the pipeline!
• Let’s put a write buffer in.

– Store the outstanding writes to the buffer.
– Write it to the DRAM while we have time.
– Still, it’s possible for the Write Buffer to be 

full. Typical Size of write buffer: 4.
– Works fine if: Store Frequency << 1/DRAM 

write cycle



CS 152 Lab 5 Lecture (4) Jack Kang Fall 2003 © UCB

Write Buffer

Cache Memory 
(DRAM)

Write Buffer

Processor



CS 152 Lab 5 Lecture (5) Jack Kang Fall 2003 © UCB

Arbiter

• Only one thing can use the DRAM at 
once.
– But we have 3 things that may make 

requests:
• Inst Mem
• Data Mem
• Write Buffer

– The arbiter must decide who gets to go, and 
in what order.

– Probably should be a FSM…
– Be Careful!!! Think it through! This is difficult!



CS 152 Lab 5 Lecture (6) Jack Kang Fall 2003 © UCB

Memory Mapped IO

• Read the spec!
– Make sure that iooutput.trace and 

ioinput.trace both work
– The same module should work both in 

simulation and synthesis
• One new thing:

– Cycle counter, can be read from 
0xFFFFFFFC



CS 152 Lab 5 Lecture (7) Jack Kang Fall 2003 © UCB

Lvl 0 Boot
• Set of instructions that loads in your instructions and 

data.
• Use mipsasm and mipsconvert as normal, but at the 

very top of your instructions, into your contents file, 
you need to add the length and the address before 
running boardRAMcreatewin

Length (number of instructions– in HEX)
Address (starting address of your code—probably 0x00000000)
Inst1
Inst2
Inst3
…

• Think about how the lvl 0 Boot loads in your values. 
Where does your boardRAM module fit in the 
processor?



CS 152 Lab 5 Lecture (8) Jack Kang Fall 2003 © UCB

Extra Credit

• Extra Credit means you don’t have to do 
it. 

• If you’re doing a burst, it’s probably a 
good idea to start off designing that way

• Used to be able to do a write-back 
cache. Too difficult, so we are saving it 
for the final project.

• Only working processors will get extra 
credit!



CS 152 Lab 5 Lecture (9) Jack Kang Fall 2003 © UCB

Schedule

14 16

19 24

31

3

Design 
Doc

Design 
Doc

checkoff

checkoff

Report



CS 152 Lab 5 Lecture (10) Jack Kang Fall 2003 © UCB

Tips on avoiding another Lab 4

• Implementation is fast, debugging is slow
– Set aside more time than you think for 

debugging. Use the trace outputs! 
– Consider writing tests before your 

implementation is done—it will help you 
organize your design.

• Understand the Specifications
– If unclear, ask! Memio module is a good 

example from lab 4.
• We are working on getting more computers


