
CS152 Spring ’99 Midterm II Page 1

University of California, Berkeley

College of Engineering

Computer Science Division EECS

Spring 1999 John Kubiatowicz

Midterm II
April 21, 1999

CS152 Computer Architecture and Engineering

Your Name: Solution

SID Number:

Discussion
Section:

Problem Possible Score

1 20

2 30

3 25

4 25

Total

CS152 Spring ’99 Midterm II Page 2

[This page left for π]

3.141592653589793238462643383279502884197169399375105820974944

CS152 Spring ’99 Midterm II Page 3

Problem 1: Memory Hierarchy
Problem 1a:
Below is a series of memory read references set to a cache. The cache holds 128 bytes total. It
has 2-word blocks (i.e. 64bits), is 2-way set associative, and uses a least-recently-used
replacement policy. Assume that the cache is initially empty.

Classify each memory references as a hit or a miss. Identify each cache miss as either
compulsory, conflict, or capacity. One example is shown below. Feel free to use space in the
margin as scratch.

Address Hit/Miss? Miss Type?

0x7 Miss Compulsory

0x4D

0x2A

0x79

0xAB

0xCE

0x2E

0x4B

0x6D

0x8A

0xAF

0x29

0xC8

0xCE

0x6A

Problem 1b:

CS152 Spring ’99 Midterm II Page 4

Problem 1c:
Suppose you have a 32-bit processor, with a virtual-memory page-size of 16K. The data cache is
32K in size with 32-byte cache blocks. Finally, your TLB has 4 entries. Assume that you wish
to do TLB lookups in parallel with cache lookups.

Draw a block diagram of the data cache and TLB organization, showing a virtual address as
input and both a physical address and data as output. Include cache hit and TLB hit output
signals. Include as much information about the internals of the TLB and cache organization as
possible. Include, among other things, all of the comparators in the system and any muxes as
well. You can indicate RAM as with a simple block, but make sure to label address widths and
data widths. Make sure to use abstraction in your diagram so that we can understand it. Label
the function of various blocks and the width of any buses.

CS152 Spring ’99 Midterm II Page 5

Now, assume the following instruction mix:
Loads: 20%, Stores: 15%, Integer: 29%, Floating-Point: 16% Branches: 20%

Assume that you have a memory-hierarchy consisting of 2-levels of cache, 1 level of DRAM,
and a DISK. The following parameters are appropriate. Assume a 200MHz processor:

Component Hit Time Miss Rate Block Size
First-Level

Cache
1 cycle

5% Data
1% Instructions

32 bytes

Second-Level
Cache

10 cycles +
1 cycle/64bits

3% 128 bytes

DRAM
100ns+

25ns/8 bytes
1% 16K bytes

DISK
50ms +

20ns/byte
0% 16K bytes

In addition, assume that there is a TLB which misses 0.1% of the time on data (doesn’t miss on
instructions) and which has a fill penalty of 50 cycles.

Problem 1d:
What is the average memory access time for Instructions? For Data?

CS152 Spring ’99 Midterm II Page 6

Problem 2: Multicycle Polynomial Multiply
The VAX architecture from Digital Equipment Corporation was well known for its complex
instruction set. One instruction that was often cited was the polynomial multiply instruction.
This instruction took two polynomials and multiplied them together to get a third:

() () ()812427724223 24567452 ++++++⇒++×++ XXXXXXXXXX

Let’s represent polynomials as pointers to arrays of numbers in memory. The first number will
be the “degree” of the polynomial (highest power of X). The following (degree+1) values will
be the coefficients of the powers of X, starting with the lowest power. For example:

() () []210004521000442 54321045 ⇒+++++=++ XXXXXXXX

The first number (5) is the degree. The next 6 numbers are coefficients. Thus, a 5th degree
polynomial is represented by 7 numbers in memory.

With that representation, a polynomial multiplication can be described with the following
straightforward pseudo-code, where poly1 – poly3 are pointers to 32-bit words in memory:

polynomial_mult(poly1,poly2) ⇒ poly3
{

degree1 = poly1[0]; /* Degree of poly1 */
degree2 = poly2[0]; /* Degree of poly2 */
degree3 = degree1 + degree2; /* Compute degree of poly3 */
poly3[0]=degree3; /* Save into result */

for (resultdeg = 0; resultdeg ≤ degree3; resultdeg++) {
indexdeg1 = MIN(resultdeg,degree1);
indexdeg2 = resultdeg – indexdeg1;

/* (indexdeg1+indexdeg2)=resultdeg throughout loop */
accum = 0;
while ((indexdeg1 ≥ 0) and (indexdeg2 ≤ degree2)) {

accum = accum + poly1[indexdeg1+1] × poly2[indexdeg2+1];
indexdeg1--; /* Decrement */
indexdeg2++; /* Increment */

}
poly3[resultdeg+1] = accum; /* Place final coeff into poly3 */

}
}

Note: In reading this code, assume that the polynomial coefficients are 32-bit values. This
means that you must scale indexes by 4 before using them, i.e. poly1[6] is at address poly+6x4!

The way that this algorithm works is that the “for” loop generates each coefficient of the result,
starting with the lowest. The inner “while” loop adds up all terms in the product that are of the
same degree. To see this, consider the 7X5 term of the result in the example above:

() () () 550432 722301 XXXXXXX =×+×+× or () () () 7221301 =×+×+×

When computing this term, resultdeg=5. Before the “while” loop, indexdeg1 starts at
MIN(5,2)=2 and indexdeg2 starts at 5-2=3. Throughout the “while” loop, the sum
(indexdeg1+indexdeg2) = 5.

CS152 Spring ’99 Midterm II Page 7

Figure 1: The Multicycle Data Path

Problem 2a:
Let the ALU support multiplication. You cannot change or duplicate the memory component, or
change or duplicate the ALU component, but are allowed to add muxes, registers, equality
comparitors, and random logic. Estimate the minimum number of cycles (on average) that you
can hope to achieve in the inner “while” loop. Justify your answer by discussing the operations
that must be performed on each iteration and showing a timing diagram for three iterations of the
inner loop. Don’t try to change the datapath yet. You will do that in (2b)

(Hints: You can recognize the last loop of the “while” condition by checking for “=0” and
“=degree2”, since this loop will always be executed at least once. Also, make sure you
understand where each of the computations come from – there may be ways of moving them out
of the inner loop!)

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr
32

A
L

U

32
32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Zero/
NEG

Zero
PCWrCond PCSrc

32

IorD

M
em

 D
ata R

eg

A
L

U
 O

ut

B

A

CS152 Spring ’99 Midterm II Page 8

Problem 2b:
Assume that our new instruction is specified as follows:

polymult $r3, $r1, $r2

Where this is an R-TYPE instruction. Here, registers r1 and r2 hold pointers to the source polynomials,
and r3 holds a pointer to memory for the destination polynomial. Let’s assume that there is enough
memory at the location specified by r3 to hold any result. Assume also that the registers should not be
changed during execution.

Change the data path to support polynomial multiply with the same rate in the inner loop as specified in
(2a)? As before, you cannot change or duplicate the memory component, or change or duplicate the ALU
component, but are allowed to add muxes, registers, equality comparitors, and random logic. Be explicit
and try to be minimize the hardware/minimize the total number of cycles for the complete operation as
much as possible. Show all new control points. (Note: the computation of initial values of indexdeg1 and
indexdeg2 can be done with one ALU operation and some muxes!)

CS152 Spring ’99 Midterm II Page 9

Table 1: Symbolic Definitions for Microcode

Field Name Values for Field Function of Field with Specific Value
ALU Add ALU adds

Subt. ALU subtracts
Func code ALU does function code
Or ALU does logical OR

SRC1 PC 1st ALU input = PC
rs 1st ALU input = Reg[rs]

SRC2 4 2nd ALU input = 4
Extend 2nd ALU input = sign ext. IR[15-0]
Extend0 2nd ALU input = zero ext. IR[15-0]
Extshft 2nd ALU input = sign ex., sl IR[15-0]
rt 2nd ALU input = Reg[rt]

destination rd ALU Reg[rd] = ALUout
rt ALU Reg[rt] = ALUout

 rt Mem Reg[rt] = Mem
Memory Read PC Read memory using PC

Read ALU Read memory using ALU output
Write ALU Write memory using ALU output

Memory register IR IR = Mem
PC write ALU PC = ALU

ALUoutCond IF ALU Zero then PC = ALUout
Sequencing Seq Go to sequential µinstruction

Fetch Go to the first microinstruction
Dispatch Dispatch using ROM.

Table 2: Microcode for Simple Instructions

Label ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write Sequence
Fetch: Add PC 4 Read PC IR ALU SEQ

Add PC Extshft Dispatch

Rtype: Func rs rt Seq
 rd ALU Fetch

Ori: Or rs Extend0 Seq
 rt ALU Fetch

Lw: Add rs Extend Seq
 Read ALU Seq
 rt MEM Fetch

Sw: Add rs Extend Seq
 WriteALU Fetch

Beq: Subt rs rt Fetch

CS152 Spring ’99 Midterm II Page 10

Assume that we are going to microcode this instruction. For your reference, Tables 1 and 2 list
the symbolic names that we have given to fields of the microinstructions, as well as the
microcoded versions of some of the simple instructions.

Problem 2c:
First, how does the sequencer box have to change in order to support this instruction? Draw a
block diagram showing the MicroPC, the logic around it, and the ROM.

Problem 2d:
Next, make changes to Table 1 to reflect your new hardware. Make sure that you are clear about
what you are adding/changing.

CS152 Spring ’99 Midterm II Page 11

Problem 2e:
Finally, write microcode for the polynomial multiply instruction. (You are now an official CISC
system designer!).

CS152 Spring ’99 Midterm II Page 12

Problem 3: Speeding up the Loops
For the following problem, assume an in-order, MIPS-style pipelined architecture with up to 4
cycles in the EX stage, but full forwarding for operations that take less than 4 cycles. Assume
the following number of execution cycles are required:

1. Floating-point multiply: 4 cycles
2. Floating-point addition: 2 cycles
3. Integer operations: 1 cycle

Assume as well that there is one branch delay slot, that there is no delay between integer
operations and dependent branch instructions, and that the load-use latency (or number of load
delay slots) is 2 cycles.

One possible pipeline that might behave this way could appear as follows:

 ID EX2 EX3

IF EX1 EX4 WR
 BR MEM1 MEM2

Now, given this pipeline, the following code computes a dot-product. Assume tha r1 and r2
contain addresses of arrays of floating-point numbers, and that r3 contains the length of the
arrays (in elements). Assume that r4 is initialized to zero. Then, the dot product can be
computed as follows:

dotprod: lw $f5, 0($r1) ; load element from first array
lw $f6, 0($r2) ; load element from second array
muls $f7, $f5, $f6 ; multiply elements
adds $f4, $f4, $f7 ; add elements to accumulator in f7
addi $r1, $r1, 4 ; advance pointers
addi $r2, $r2, 4
addi $r3, $r3, -1 ; decrement element count
bne $r3, $zero, dotprod ; loop
nop ; Do nothing (branch delay slot)

Problem 3a:
How many cycles on average does each iteration take, without rearranging the code?

Problem 3b:
Rearrange the code so that it gets as few cycles per iteration as possible (don’t unroll the loop).
Show the scheduled code. How many cycles per iteration does it get now?

CS152 Spring ’99 Midterm II Page 13

Problem 3c:
Unroll the given loop once, and schedule it to completely avoid stalls. Show your code. How
many cycles per iteration does it get now?

Problem 3d:
If you were to unroll the loop 8 times, how many cycles per iteration would this achieve?
(hint: you do not need to actually perform the unrolling, but justify your answer)

Problem 3e:
Now, assume that you want to design a new processor that is more deeply pipelined, i.e. which
has larger latencies for all of the operations. Maximize the latencies of instructions that the loop
can tolerate by rewriting the loop with software pipelining. Do not unroll the loop (i.e. there will
be only 8 instructions). Only show code for the loop; you can ignore any startup or cleanup
instructions outside the loop. Hint: this code will overlap 3 different iterations of the loop.

Problem 3f:
For the software-pipelined version of the loop, assuming that the loop runs without stalls, what is

• the maximum execution latency for muls?
• the maximum execution latency for adds?
• the maximum load-use latency (delay slots) for lw?
•

Problem 3g:
Assuming that most of the power in your original processor was consumed in the execute stages,
is the new processor likely to consume more, the same, or less power than the original? Why?

CS152 Spring ’99 Midterm II Page 14

Problem 4: Hazards and Advanced Pipelining

This problem brings together a number of different elements of pipelining.

Problem 4a:
There are three different types of data hazards, RAW, WAR, and WAW. Define them, giving a
short code sequence to illustrate each, and describe how a 5-stage pipeline removes them:

a) RAW:

b) WAR:

c) WAW:

Problem 4b:
What are control hazards? Name and explain two different techniques for getting rid of them.

Problem 4c:
What are precise exceptions and why are they important?

Problem 4d:
Explain how to achieve precise exceptions in a standard 5-stage pipeline. Be explicit.

CS152 Spring ’99 Midterm II Page 15

Figure 2: A basic Tomasulo architecture

Problem 4e:
Figure 2 shows the basic components of a Tomasulo architecture. This architecture replaces the
normal 5-stages of execution with 4 stages: Fetch, Issue, Execute, and Writeback. Explain what
happens to an instruction in each of them (be as complete as you can):

a) Fetch:

b) Issue:

c) Execute:

d) Writeback:

,QWHJHU

,QW�
,QW�
,QW�

)ORDWLQJSRLQW

)ORDW�
)ORDW�

)URP 0HP)3�5HJLVWHUV

&RPPRQ�'DWD�%XV��&'%�

7R 0HP

,QVWUXFWLRQ
4XHXH

/RDG�
/RDG�
/RDG�
/RDG�
/RDG�
/RDG�

6WRUH�
6WRUH�
6WRUH�

CS152 Spring ’99 Midterm II Page 16

Problem 4f:
Explain how the Tomasulo architecture handles the three different types of data hazards:

Problem 4g:
Assume that you have a long chain of dependent instructions, such as the following:

add $r1, $r2, $r3
add $r3, $r1, $r4
add $r7, $r3, $r5

→
Also assume that the integer execution unit takes one cycle for adds. What CPI would you
achieve for this sequence with the basic Tomasulo architecture, assuming that each of the stages
from (4f) are non-overlapped and take a complete cycle?

Problem 4h:
Assume that associative matching on the CDB is a slow enough operation that it takes much of a
cycle. How can you still get a throughput of one instruction per cycle for long dependent chains
of operations such as given in (4g)? Only well-thought-out answers will get credit.

Problem 4i:
Finally, the Tomasulo algorithm has one interesting “bug” in it. Consider the situation where
one instruction uses a value from another one. Suppose the first instruction is issued on the same
cycle as the one that it depends on is in writeback.

add $r1, $r2, $r3 ← The result is broadcast
...

add $r4, $r1, $r1 ← This one is being issued

What is the problem? Can you fix it easily?

