
CS 152 L01 Introduction & MIPS Review (1) Patterson Fall 2003 © UCB

2003-08-26

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

CS152 – Computer Architecture and
Engineering

Lecture 1 – Introduction & MIPS Review

CS 152 L01 Introduction & MIPS Review (2) Patterson Fall 2003 © UCB

152

Where is “Computer Architecture and Engineering”?

*Coordination of many levels of abstraction

I/O systemProcessor

Compiler
Operating

System
(Windows 2K)

Application (Netscape)

Digital Design
Circuit Design

Instruction Set
Architecture

Datapath & Control

transistors

MemoryHardware

Software Assembler

CS 152 L01 Introduction & MIPS Review (3) Patterson Fall 2003 © UCB

Anatomy: 5 components of any Computer

Personal Computer

Processor

Computer

Control
(“brain”)

Datapath
(“brawn”)

Memory

(where
programs,
data
live when
running)

Devices

Input

Output

Keyboard,
Mouse

Display,
Printer

Disk
(where
programs,
data
live when
not running)

CS 152 L01 Introduction & MIPS Review (4) Patterson Fall 2003 © UCB

Computer Technology - Dramatic Change!
°Processor

• 2X in speed every 1.5 years (since ‘85);
100X performance in last decade.

°Memory
• DRAM capacity: 2x / 2 years (since ‘96);
64x size improvement in last decade.

°Disk
• Capacity: 2X / 1 year (since ‘97)
• 250X size in last decade.

CS 152 L01 Introduction & MIPS Review (5) Patterson Fall 2003 © UCB

Year

1000

10000

100000

1000000

10000000

100000000

1970 1975 1980 1985 1990 1995 2000

i80386

i4004

i8080

Pentium

i80486

i80286

i8086

Technology Trends: Microprocessor
Complexity

2X transistors/Chip
Every 1.5 years

Called
“Moore’s Law”

Alpha 21264: 15 million
Pentium Pro: 5.5 million
PowerPC 620: 6.9 million
Alpha 21164: 9.3 million
Sparc Ultra: 5.2 million

Moore’s Law

Athlon (K7): 22 Million

CS 152 L01 Introduction & MIPS Review (6) Patterson Fall 2003 © UCB

Where are we going??

CS152
Fall ‘03

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)

1

10

100

1000

19
8

0 19
8

1 19
8

3 19
8

4 19
8

5 19
8

6 19
8

7 19
8

8 19
8

9 19
9

0 19
9

1 19
9

2 19
9

3 19
9

4 19
9

5 19
9

6 19
9

7 19
9

8 19
9

9 20
0

0

DRAM

CPU

19
8

2

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

34-bit ALU

LO register
(16x2 bits)

Lo
ad

H
I

C
le

ar
H

I

Lo
ad

LO

Multiplicand
Register

ShiftAll

LoadMp

E
xtra

2 bits

3232

LO[1:0]

Result[HI] Result[LO]

32 32

P
rev

LO
[1]

B
ooth

E
ncoder ENC[0]

ENC[2]

"L
O[

0]
"

Control
Logic

Input
Multiplier

32

Sub/Add

2

34

34

32

Input
Multiplicand

32=>34
signEx

34
34x2 MUX

32=>34
signEx

<<1 34

ENC[1]

Multi x2/x1

2

2HI register
(16x2 bits)

2

01

34 ArithmeticSingle/multicycle
Datapaths

IFetchDcd Exec Mem WB

IFetchDcd Exec Mem WB

IFetchDcd Exec Mem WB

IFetchDcd Exec Mem WB

Pipelining

Memory Systems

I/O

Y
O
U
R

C
P
U

CS 152 L01 Introduction & MIPS Review (7) Patterson Fall 2003 © UCB

Project Focus
° Design Intensive Class ---
100 to 200 hours per semester per student

MIPS Instruction Set ---> FPGA implementation

° Modern CAD System:
Schematic capture and Simulation

Design
Description

Computer-based
"breadboard"

• Behavior over time
• Before construction

Xilinx FPGA board
• Running design

at 25 MHz
to 50 MHz

(~ state-of-the-art
clock rate a
decade ago)

CS 152 L01 Introduction & MIPS Review (8) Patterson Fall 2003 © UCB

Project Simulates Industrial Environment
°Project teams have 4 or 5 members in
same discussion section

• Must work in groups in “the real world”
°Communicate with colleagues (team
members)

• Communication problems are natural
• What have you done?
• What answers you need from others?
• You must document your work!!!
• Everyone must keep an on-line notebook

°Communicate with supervisor (TAs)
• How is the team’s plan?
• Short progress reports are required:

- What is the team’s game plan?
- What is each member’s responsibility?

CS 152 L01 Introduction & MIPS Review (9) Patterson Fall 2003 © UCB

CS152: So what's in it for me?
° In-depth understanding of the inner-workings

of computers & trade-offs at HW/SW boundary
• Insight into fast/slow operations that are easy/hard

to implement in hardware (HW)
• Out of order execution and branch prediction

° Experience with the design process in the
context of a large complex (hardware) design.

• Functional Spec --> Control & Datapath -->
Physical implementation

• Modern CAD tools
• Make 32-bit RISC processor in actual hardware

° Learn to work as team, with manager (TA)
° Designer's "Conceptual" toolbox.

CS 152 L01 Introduction & MIPS Review (10) Patterson Fall 2003 © UCB

Conceptual tool box?
° Evaluation Techniques
° Levels of translation (e.g., Compilation)
° Levels of Interpretation (e.g., Microprogramming)
° Hierarchy (e.g, registers, cache, mem,disk,tape)
° Pipelining and Parallelism
° Static / Dynamic Scheduling
° Indirection and Address Translation
° Synchronous /Asynchronous Control Transfer
° Timing, Clocking, and Latching
° CAD Programs, Hardware Description

Languages, Simulation
° Physical Building Blocks (e.g., Carry Lookahead)
° Understanding Technology Trends / FPGAs

CS 152 L01 Introduction & MIPS Review (11) Patterson Fall 2003 © UCB

Texts
°Required: Computer Organization
and Design: The Hardware/Software
Interface, Beta Version 3rd Edition,
Patterson and Hennessy (COD):
Free; hand out in class in 2 or 3
volumes.

• Just want feedback, learn mistakes

°Reading assignments on web page

http://inst.eecs.berkeley.edu/~cs152

CS 152 L01 Introduction & MIPS Review (12) Patterson Fall 2003 © UCB

Format: Lecture - Disc - Lecture - Lab
°Mon Labs, Homeworks due

• Lab 1 due Wed 9/3 since Mon 9/1 is holiday

°Tue Lecture
°Wed (later in semester) Design Doc. Due
°Thu Lecture
°Fri Discussion Section/Lab demo

There IS discussion this week…;

°Prerequisite Quiz this Friday

CS 152 L01 Introduction & MIPS Review (13) Patterson Fall 2003 © UCB

TAs

°Jack Kang
• jackkang@uclink.berkeley.edu

°John Gibson
• jgibson@uclink.berkeley.edu

°Kurt Meinz
• kurtm@mail.com

CS 152 L01 Introduction & MIPS Review (14) Patterson Fall 2003 © UCB

3 Discussion Sections

1. 11 AM - 1 PM 320 Soda (John)
2. 2 PM - 4 PM 4 Evans (Kurt)
3. 3 PM - 5 PM 81 Evans (Jack)

°2-hour discussion section for later in
term. Early sections may end in 1
hour. Make sure that you are free for
both hours however!

° Project team must be in same section!

CS 152 L01 Introduction & MIPS Review (15) Patterson Fall 2003 © UCB

Typical 80-minute Lecture Format
°18-Minute Lecture + 2-Min admin break
°20-Minute Lecture + 10-Min Peer instruct.
°25-Minute Lecture + 5-Min wrap-up
°We’ll come to class early & try to stay
after to answer questions

Attention

Time
20 min. Break Next

thing
“In
conclusion”

CS 152 L01 Introduction & MIPS Review (16) Patterson Fall 2003 © UCB

Tried-and-True Technique: Peer Instruction
° Increase real-time learning in
lecture, test understanding of
concepts vs. details

°As complete a “segment” ask
multiple choice question

• 1-2 minutes to decide yourself
• 3-4 minutes in pairs/triples to reach
consensus. Teach each other!

• 2-3 minute discussion of answers,
questions, clarifications

°By 9/2: buy $37 PRS Transmitor
from behind ASUC textbook desk

(Chem 1A, CS 61ABC, 160)

CS 152 L01 Introduction & MIPS Review (17) Patterson Fall 2003 © UCB

Peer Instruction
°Read textbook, review lectures (new or
old) before class

• Reduces examples have to do in class
• Get more from lecture

- also good advice in general

°Fill out 3 question Web Form on
reading (deadline 11am before lecture)

• Graded for correctness
• Will start next week, since Prerequisite
Quiz this week

CS 152 L01 Introduction & MIPS Review (18) Patterson Fall 2003 © UCB

Homeworks and Labs/Projects

°Homework exercises (every 2 weeks)

°Lab Projects (every ~2 weeks)
• Lab 1 Write diagnostics to debug bad SPIM
• Lab 2 Multiplier Design + Intro to hardware
synthesis on FPGA board

• Lab 3 Single Cycle Processor Design
• Lab 4 Pipelined Processor Design
• Lab 5/6 Cache (3 weeks; Read Only 1st)
• Lab 7 Advanced pipelined modules

°All exercises, reading, homeworks,
projects on course web page

CS 152 L01 Introduction & MIPS Review (19) Patterson Fall 2003 © UCB

Project/Lab Summary
°Tool Flow runs on PCs in 119 and 125
Cory, but 119 Cory is primary CS152 lab

°Get instructional UNIX/PC account now
(“name account”); get in discussion

°Get card-key access to Cory now (3rd
floor)

°End of semester Project finale:
• Demo
• Oral Presentation
• Head-to-head Race
• Final Report

CS 152 L01 Introduction & MIPS Review (20) Patterson Fall 2003 © UCB

Course Exams
°Reduce the pressure of taking exams

• Midterms: Wed October 8th and Wed Nov. 19th

in 1 LeConte
• 3 hrs to take 1.5-hr test (5:30-8:30 PM)
• Our goal: test knowledge vs. speed writing
• Review meetings: Sunday/Tues before?
• Both mid-terms can bring summary sheets

°Students/Staff meet over pizza after exam
at LaVals!

• Allow me to meet you
• I’ll buy!

CS 152 L01 Introduction & MIPS Review (21) Patterson Fall 2003 © UCB

Grading
° Grade breakdown

• Two Midterm Exams: 35% (combined)
• Labs and Design Project: 45%
• Homework Reading Quiz: 5%
• Project Group Participation:5%
• Class Participation (PRS): 10%

° No late homeworks or labs:
our goal grade, return in 1 week

° Grades posted on home page/glookup?
• Written/email request for changes to grades

° EECS GPA guideline upper div. class: 2.7 to 3.1
• average 152 grade = B/B+; set expectations

accordingly
CS 152 L01 Introduction & MIPS Review (22) Patterson Fall 2003 © UCB

Course Problems…Cheating

° What is cheating?
• Studying together in groups is encouraged
• Work must be your own
• Common examples of cheating: work together

on wording of answer to homework, running
out of time on a assignment and then pick up
output, take homework from box and copy,
person asks to borrow solution “just to take a
look”, copying an exam question, …

° Homeworks/labs/projects
points varies; -10 cheat

° Inform Office of Student Conduct

CS 152 L01 Introduction & MIPS Review (23) Patterson Fall 2003 © UCB

My Goal

°Show you how to understand modern
computer architecture in its rapidly
changing form.

°Show you how to design by leading
you through the process on
challenging design problems

°Learn how to test things.
°NOT just to talk at you. So ...

• ask questions
• come to office hours

CS 152 L01 Introduction & MIPS Review (24) Patterson Fall 2003 © UCB

MIPS I
Instruction set

CS 152 L01 Introduction & MIPS Review (25) Patterson Fall 2003 © UCB

MIPS I Operation Overview

°Arithmetic Logical:
•Add, AddU, Sub, SubU, And, Or,
Xor, Nor, SLT, SLTU

•AddI, AddIU, SLTI, SLTIU, AndI, OrI,
XorI, LUI

•SLL, SRL, SRA, SLLV, SRLV, SRAV

°Memory Access:
•LB, LBU, LH, LHU, LW, LWL,LWR
•SB, SH, SW, SWL, SWR

CS 152 L01 Introduction & MIPS Review (26) Patterson Fall 2003 © UCB

Multiply / Divide
°Start multiply, divide

• MULT rs, rt
• MULTU rs, rt
• DIV rs, rt
• DIVU rs, rt

°Move result from multiply, divide
• MFHI rd
• MFLO rd

°Move to HI or LO
• MTHI rd
• MTLO rd

Registers

HI LO

Q: Why not Third field for
destination?

CS 152 L01 Introduction & MIPS Review (27) Patterson Fall 2003 © UCB

Data Types
Bit: 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte

16 bits is a half-word
32 bits is a word
64 bits is a double-word

Character:
ASCII 7 bit code
UNICODE 16 bit code

Decimal:
digits 0-9 encoded as 0000b thru 1001b
two decimal digits packed per 8 bit byte

Integers:
2's Complement

Floating Point:
Single Precision
Double Precision
Extended Precision

M x RE
How many +/- #'s?
Where is decimal pt?
How are +/- exponents

represented?

exponent

base
mantissa

CS 152 L01 Introduction & MIPS Review (28) Patterson Fall 2003 © UCB

MIPS arithmetic instructions
Instruction Example Meaning Comments
add add $1,$2,$3 $1 = $2 + $3 3 operands; exception possible
subtract sub $1,$2,$3 $1 = $2 – $3 3 operands; exception possible
add immediate addi $1,$2,100 $1 = $2 + 100 + constant; exception possible
add unsigned addu $1,$2,$3 $1 = $2 + $3 3 operands; no exceptions
subtract unsigned subu $1,$2,$3 $1 = $2 – $3 3 operands; no exceptions
add imm. unsign. addiu $1,$2,100 $1 = $2 + 100 + constant; no exceptions
multiply mult $2,$3 Hi, Lo = $2 x $3 64-bit signed product
multiply unsigned multu$2,$3 Hi, Lo = $2 x $3 64-bit unsigned product
divide div $2,$3 Lo = $2 ÷ $3, Lo = quotient, Hi = remainder

Hi = $2 mod $3
divide unsigned divu $2,$3 Lo = $2 ÷ $3, Unsigned quotient & remainder

Hi = $2 mod $3
Move from Hi mfhi $1 $1 = Hi Used to get copy of Hi
Move from Lo mflo $1 $1 = Lo Used to get copy of Lo

Q: Which add for address arithmetic? Which add for integers?

CS 152 L01 Introduction & MIPS Review (29) Patterson Fall 2003 © UCB

MIPS logical instructions
Instruction Example Meaning Comment
and and $1,$2,$3 $1 = $2 & $3 3 reg. operands; Logical AND

or or $1,$2,$3 $1 = $2 | $3 3 reg. operands; Logical OR

xor xor $1,$2,$3 $1 = $2 ^ $3 3 reg. operands; Logical XOR

nor nor $1,$2,$3 $1 = ~($2 |$3) 3 reg. operands; Logical NOR

and immediate andi $1,$2,10 $1 = $2 & 10 Logical AND reg, constant

or immediate ori $1,$2,10 $1 = $2 | 10 Logical OR reg, constant

xor immediate xori $1, $2,10 $1 = ~$2 &~10 Logical XOR reg, constant

shift left logical sll $1,$2,10 $1 = $2 << 10 Shift left by constant

shift right logical srl $1,$2,10 $1 = $2 >> 10 Shift right by constant

shift right arithm. sra $1,$2,10 $1 = $2 >> 10 Shift right (sign extend)

shift left logical sllv $1,$2,$3 $1 = $2 << $3 Shift left by variable

shift right logical srlv $1,$2, $3 $1 = $2 >> $3 Shift right by variable

shift right arithm. srav $1,$2, $3 $1 = $2 >> $3 Shift right arith. by variable

Q: Can some multiply by 2i ? Divide by 2i ? Invert?
CS 152 L01 Introduction & MIPS Review (30) Patterson Fall 2003 © UCB

MIPS data transfer instructions
Instruction Comment
sw 500($4), $3 Store word
sh 502($2), $3 Store half
sb 41($3), $2 Store byte

lw $1, 30($2) Load word
lh $1, 40($3) Load halfword
lhu $1, 40($3) Load halfword unsigned
lb $1, 40($3) Load byte
lbu $1, 40($3) Load byte unsigned

lui $1, 40 Load Upper Immediate (16 bits shifted left by 16)
Q: Why need lui?

0000 … 0000

LUI R5

R5

CS 152 L01 Introduction & MIPS Review (31) Patterson Fall 2003 © UCB

When does MIPS sign extend?
° When value is sign extended, copy upper bit to full value:

Examples of sign extending 8 bits to 16 bits:

00001010 ⇒ 00000000 00001010
10001100 ⇒ 11111111 10001100

° When is an immediate operand sign extended?
• Arithmetic instructions (add, sub, etc.) always sign extend immediates even for the

unsigned versions of the instructions!
• Logical instructions do not sign extend immediates (They are zero extended)
• Load/Store address computations always sign extend immediates

° Multiply/Divide have no immediate operands however:
• “unsigned” ⇒ treat operands as unsigned

° The data loaded by the instructions lb and lh are extended as follows
(“unsigned” ⇒ don’t extend):

• lbu, lhu are zero extended
• lb, lh are sign extended

Q: Then what is does
add unsigned (addu) mean
since not immediate?

CS 152 L01 Introduction & MIPS Review (32) Patterson Fall 2003 © UCB

MIPS Compare and Branch
° Compare and Branch

• BEQ rs, rt, offset if R[rs] == R[rt] then PC-relative branch
• BNE rs, rt, offset <>

° Compare to zero and Branch
• BLEZ rs, offset if R[rs] <= 0 then PC-relative branch
• BGTZ rs, offset >
• BLT <
• BGEZ >=
• BLTZAL rs, offset if R[rs] < 0 then branch and link (into R 31)
• BGEZAL >=!

° Remaining set of compare and branch ops take two
instructions

° Almost all comparisons are against zero!

CS 152 L01 Introduction & MIPS Review (33) Patterson Fall 2003 © UCB

MIPS jump, branch, compare instructions
Instruction Example Meaning

branch on equal beq $1,$2,100 if ($1 == $2) go to PC+4+100
Equal test; PC relative branch

branch on not eq. bne $1,$2,100 if ($1!= $2) go to PC+4+100
Not equal test; PC relative

set on less than slt $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; 2’s comp.

set less than imm. slti $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; 2’s comp.

set less than uns. sltu $1,$2,$3 if ($2 < $3) $1=1; else $1=0
Compare less than; natural numbers

set l. t. imm. uns. sltiu $1,$2,100 if ($2 < 100) $1=1; else $1=0
Compare < constant; natural numbers

jump j 10000 go to 10000
Jump to target address

jump register jr $31 go to $31
For switch, procedure return

jump and link jal 10000 $31 = PC + 4; go to 10000
For procedure call

CS 152 L01 Introduction & MIPS Review (34) Patterson Fall 2003 © UCB

Signed vs. Unsigned Comparison
$1= 0…00 0000 0000 0000 0001
$2= 0…00 0000 0000 0000 0010
$3= 1…11 1111 1111 1111 1111
° After executing these instructions:
slt $4,$2,$1 ; if ($2 < $1) $4=1; else $4=0
slt $5,$3,$1 ; if ($3 < $1) $5=1; else $5=0
sltu $6,$2,$1 ; if ($2 < $1) $6=1; else $6=0
sltu $7,$3,$1 ; if ($3 < $1) $7=1; else $7=0

° What are values of registers $4 - $7? Why?
$4 = ; $5 = ; $6 = ; $7 = ;

two

two

two

CS 152 L01 Introduction & MIPS Review (35) Patterson Fall 2003 © UCB

Branch & Pipelines

execute

Branch

Delay Slot

Branch Target

By the end of Branch instruction, the CPU knows whether or not
the branch will take place.

However, it will have fetched the next instruction by then,
regardless of whether or not a branch will be taken.

Why not execute it?

ifetch execute

ifetch execute

ifetch execute
LL: slt $1, $3, $5

li $3, #7
sub $4, $4, 1
bz $4, LL
addi $5, $3, 1

Time

ifetch execute

CS 152 L01 Introduction & MIPS Review (36) Patterson Fall 2003 © UCB

Delayed Branches

° In the “Raw” MIPS, the instruction after the branch is
executed even when the branch is taken

• This is hidden by the assembler for the MIPS “virtual machine”
• allows the compiler to better utilize the instruction pipeline (???)

° Jump and link (jal inst):
• Put the return addr. Into link register ($31):

- PC+4 (logical architecture)
- PC+8 physical (“Raw”) architecture ⇒ delay slot executed

• Then jump to destination address

li $3, #7
sub $4, $4, 1
bz $4, LL
addi $5, $3, 1
subi $6, $6, 2

LL: slt $1, $3, $5

⇐ Delay Slot Instruction

CS 152 L01 Introduction & MIPS Review (37) Patterson Fall 2003 © UCB

Filling Delayed Branches
Inst Fetch Dcd & Op Fetch ExecuteBranch:

Inst Fetch Dcd & Op Fetch

Inst Fetch

Executeexecute successor
even if branch taken!

Then branch target
or continue Single delay slot

impacts the critical path

•Compiler can fill a single delay slot
with a useful instruction 50% of the
time.

• try to move down from above
jump

•move up from target, if safe

add $3, $1, $2
sub $4, $4, 1
bz $4, LL
NOP
...

LL: add rd, ...

Is this violating the ISA abstraction?

CS 152 L01 Introduction & MIPS Review (38) Patterson Fall 2003 © UCB

Miscellaneous MIPS I instructions

° break A breakpoint trap occurs, transfers control
to exception handler

° syscall A system trap occurs, transfers control to
exception handler

° coprocessor instrs. Support for floating point
° TLB instructions Support for virtual memory: discussed later
° restore from exception Restores previous interrupt mask &

kernel/user mode bits into status register
° load word left/right Supports misaligned word loads
° store word left/right Supports misaligned word stores

CS 152 L01 Introduction & MIPS Review (39) Patterson Fall 2003 © UCB

Name Number Usage Preserved on call?
$zero 0 the value 0 n/a
$v0-$v1 2-3 return values no
$a0-$a3 4-7 arguments no
$t0-$t7 8-15 temporaries no
$s0-$s7 16-23 saved yes
$t18-$t19 24-25 temporaries no
$sp 29 stack pointer yes
$ra 31 return address yes

MIPS assembler register convention

°“caller saved”
°“callee saved”

CS 152 L01 Introduction & MIPS Review (40) Patterson Fall 2003 © UCB

Summary: Salient features of MIPS I
• 32-bit fixed format inst (3 formats)
• 32 32-bit GPR (R0 contains zero) and 32 FP registers (and HI LO)

– partitioned by software convention
• 3-address, reg-reg arithmetic instr.
• Single address mode for load/store: base+displacement

– no indirection, scaled
• 16-bit immediate plus LUI
• Simple branch conditions

– compare against zero or two registers for =,≠
– no integer condition codes

• Delayed branch
– execute instruction after a branch (or jump) even if the

branch is taken
(Compiler can fill a delayed branch with useful work about
50% of the time)

CS 152 L01 Introduction & MIPS Review (41) Patterson Fall 2003 © UCB

What C code properly fills in the blank in loop on right?

1: A[i++] >= 10
2: A[i++] >= 10 | A[i] < 0
3: A[i] >= 10 || A[i++] < 0
4: A[i++] >= 10 || A[i] < 0
5: A[i] >= 10 && A[i++] < 06 None of the above

Peer Instruction: $s3=i, $s4=j, $s5=@A

do j = j + 1
while (______);

Loop: addiu $s4,$s4,1 # j = j + 1
sll $t1,$s3,2 # $t1 = 4 * i
addu $t1,$t1,$s5 # $t1 = @ A[i]
lw $t0,0($t1) # $t0 = A[i]
addiu $s3,$s3,1 # i = i + 1
slti $t1,$t0,10 # $t1 = $t0 < 10
beq $t1,$0, Loop # goto Loop
slti $t1,$t0, 0 # $t1 = $t0 < 0
bne $t1,$0, Loop # goto Loop

CS 152 L01 Introduction & MIPS Review (42) Patterson Fall 2003 © UCB

What C code properly fills in the blank in loop on right?

1: A[i++] >= 10
2: A[i++] >= 10 | A[i] < 0
3: A[i] >= 10 || A[i++] < 0
4: A[i++] >= 10 || A[i] < 0
5: A[i] >= 10 && A[i++] < 06: None of the above

Peer Instruction: $s3=i, $s4=j, $s5=@A

do j = j + 1
while (______);

Loop: addiu $s4,$s4,1 # j = j + 1
sll $t1,$s3,2 # $t1 = 4 * i
addu $t1,$t1,$s5 # $t1 = @ A[i]
lw $t0,0($t1) # $t0 = A[i]
addiu $s3,$s3,1 # i = i + 1
slti $t1,$t0,10 # $t1 = $t0 < 10
beq $t1,$0, Loop # goto Loop if $t1 == 0 ($t0 >= 10)
slti $t1,$t0, 0 # $t1 = $t0 < 0
bne $t1,$0, Loop # goto Loop if $t1 != 0 ($t0 < 0)

CS 152 L01 Introduction & MIPS Review (43) Patterson Fall 2003 © UCB

Instruction Formats

° I-format: used for instructions with
immediates, lw and sw (since the offset
counts as an immediate), and the
branches (beq and bne),

• (but not the shift instructions; later)

°J-format: used for j and jal
°R-format: used for all other instructions
° It will soon become clear why the
instructions have been partitioned in
this way.

CS 152 L01 Introduction & MIPS Review (44) Patterson Fall 2003 © UCB

R-Format Instructions (1/4)
°Define “fields” of the following number
of bits each: 6 + 5 + 5 + 5 + 5 + 6 = 32
6 5 5 5 65

opcode rs rt rd functshamt
°For simplicity, each field has a name:

CS 152 L01 Introduction & MIPS Review (45) Patterson Fall 2003 © UCB

R-Format Instructions (2/4)
°What do these field integer values tell
us?
•opcode: partially specifies what instruction
it is

- Note: This number is equal to 0 for all R-Format
instructions.

•funct: combined with opcode, this number
exactly specifies the instruction

CS 152 L01 Introduction & MIPS Review (46) Patterson Fall 2003 © UCB

R-Format Instructions (3/4)

°More fields:
•rs (Source Register): generally used to
specify register containing first operand
•rt (Target Register): generally used to
specify register containing second
operand (note that name is misleading)
•rd (Destination Register): generally used
to specify register which will receive
result of computation

CS 152 L01 Introduction & MIPS Review (47) Patterson Fall 2003 © UCB

R-Format Instructions (4/4)

°Final field:
•shamt: This field contains the amount a
shift instruction will shift by. Shifting a
32-bit word by more than 31 is useless,
so this field is only 5 bits (so it can
represent the numbers 0-31).

• This field is set to 0 in all but the shift
instructions.

CS 152 L01 Introduction & MIPS Review (48) Patterson Fall 2003 © UCB

R-Format Example

°MIPS Instruction:
add $8,$9,$10

0 9 10 8 320
Binary number per field representation:

Decimal number per field representation:

hex representation: 012A 4020hex
decimal representation: 19,546,144ten

000000 01001 01010 01000 10000000000
hex

CS 152 L01 Introduction & MIPS Review (49) Patterson Fall 2003 © UCB

I-Format Example (1/2)

°MIPS Instruction:
addi $21,$22,-50

opcode = 8 (look up in table in book)
rs = 22 (register containing operand)
rt = 21 (target register)
immediate = -50 (by default, this is decimal)

CS 152 L01 Introduction & MIPS Review (50) Patterson Fall 2003 © UCB

I-Format Example (2/2)

°MIPS Instruction:
addi $21,$22,-50

8 22 21 -50

001000 10110 10101 1111111111001110

Decimal/field representation:

Binary/field representation:

hexadecimal representation: 22D5 FFCEhex
decimal representation: 584,449,998ten

CS 152 L01 Introduction & MIPS Review (51) Patterson Fall 2003 © UCB

J-Format Instructions (1/2)

°Define “fields” of the following
number of bits each:

6 bits 26 bits

opcode target address
°As usual, each field has a name:

°Key Concepts
• Keep opcode field identical to R-format
and I-format for consistency.

• Combine all other fields to make room
for large target address.

CS 152 L01 Introduction & MIPS Review (52) Patterson Fall 2003 © UCB

J-Format Instructions (2/2)

°Summary:
• New PC = { PC[31..28], target address, 00 }

°Understand where each part came from!
°Note: { , , } means concatenation
{ 4 bits , 26 bits , 2 bits } = 32 bit address

• { 1010, 11111111111111111111111111, 00 }
= 10101111111111111111111111111100

• Note: Book uses ||, Verilog uses { , , }
• We will use Verilog in this class

CS 152 L01 Introduction & MIPS Review (53) Patterson Fall 2003 © UCB

Peer Instruction
Which instruction has same representation as 35ten?

A. add $0, $0, $0
B. subu $s0,$s0,$s0
C. lw $0, 0($0)
D. addi $0, $0, 35
E. subu $0, $0, $0
F. Trick question!

Instructions are not numbers
Registers numbers and names:

0: $0, 8: $t0, 9:$t1, ..15: $t7, 16: $s0, 17: $s1, .. 23: $s7
Opcodes and function fields (if necessary)

add: opcode = 0, funct = 32
subu: opcode = 0, funct = 35
addi: opcode = 8
lw: opcode = 35

opcode rs rt offset

rd functshamtopcode rs rt

opcode rs rt immediate

rd functshamtopcode rs rt

rd functshamtopcode rs rt

CS 152 L01 Introduction & MIPS Review (54) Patterson Fall 2003 © UCB

Peer Instruction
Which instruction bit pattern = number 35?

A. add $0, $0, $0
B. subu $s0,$s0,$s0

C. lw $0, 0($0)
D. addi $0, $0, 35

E. subu $0, $0, $0
F. Trick question!

Instructions != numbers
Registers numbers and names:

0: $0, 8: $t0, 9:$t1, …,16: $s0, 17: $s1, …,
Opcodes and function fields

add: opcode = 0, function field = 32
subu: opcode = 0, function field = 35
addi: opcode = 8
lw: opcode = 35

35 0 0 0

0 3200 0 0

8 0 0 35

16 3500 16 16

0 3500 0 0

CS 152 L01 Introduction & MIPS Review (55) Patterson Fall 2003 © UCB

And in conclusion...
°Continued rapid improvement in
Computing
• 2X every 1.5 years in processor speed;
every 2.0 years in memory size;
every 1.0 year in disk capacity;
Moore’s Law enables processor, memory
(2X transistors/chip/ ~1.5 yrs)

°5 classic components of all computers
Control Datapath Memory Input Output

Processor

