
1

CS 152 L20 TLB/VM (1) Patterson Fall 2003 © UCB

CS152 – Computer Architecture and
Engineering

Lecture 20 – TLB/Virtual memory

2003-11-04

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

CS 152 L20 TLB/VM (2) Patterson Fall 2003 © UCB

Review
• IA- 32 OOO processors

– HW translation to RISC operations
– Superpipelined P4 with 22-24 stages vs. 12 stage Opteron
– Trace cache in P4
– SSE2 increasing floating point performance

• Very Long Instruction Word machines (VLIW)
⇒ Multiple operations coded in single, long instruction
– EPIC as a hybrid between VLIW and traditional

pipelined computers
– Uses many more registers

• 64- bit: New ISA (IA- 64) or Evolution (AMD64)?
– 64-bit Address space needed larger DRAM memory

CS 152 L20 TLB/VM (3) Patterson Fall 2003 © UCB

61C Review- Three Advantages of Virtual Memory

1) Translation:
– Program can be given consistent view of memory,

even though physical memory is scrambled
– Makes multiple processes reasonable
– Only the most important part of program

(“Working Set”) must be in physical memory
– Contiguous structures (like stacks) use only as

much physical memory as necessary yet still
grow later

CS 152 L20 TLB/VM (4) Patterson Fall 2003 © UCB

61C Review- Three Advantages of Virtual Memory

2) Protection:
– Different processes protected from each other
– Different pages can be given special behavior

• Read Only, No execute, Invisible to user programs,...
– Kernel data protected from User programs
– Very important for protection from malicious programs ⇒

Far more “viruses” under Microsoft Windows
– Special Mode in processor (“Kernel more”) allows

processor to change page table/TLB
3) Sharing:

– Can map same physical page to multiple users
(“Shared memory”)

CS 152 L20 TLB/VM (5) Patterson Fall 2003 © UCB

What is the size of information blocks that are transferred from secondary
to main storage (M)? ⇒ page size
(Contrast with physical block size on disk, I.e. sector size)

Which region of M is to hold the new block ⇒ placement policy

How do we find a page when we look for it? ⇒ block identification

Block of information brought into M, and M is full, then some region of M
must be released to make room for the new block
⇒ replacement policy

What do we do on a write? ⇒ write policy

Missing item fetched from secondary memory only on the occurrence of a
fault ⇒ demand load policy

pages

reg

cache
mem disk

frame

Issues in Virtual Memory System Design

CS 152 L20 TLB/VM (6) Patterson Fall 2003 © UCB

Kernel/User Mode

• Generally restrict device access, page
table to OS

• HOW?
• Add a “mode bit” to the machine: K/U
• Only allow SW in “kernel mode” to

access device registers, page table
• If user programs could access I/O

devices and page tables directly?
– could destroy each others data, ...
– might break the devices, …

2

CS 152 L20 TLB/VM (7) Patterson Fall 2003 © UCB

Note: Actual MIPS Process Memory Allocation

0

∞ (232-1)
Address

Code

Static

User code/data space

Heap

Stack

I/O device registers

$sp

$gp

∞/2 (231-1)

I/O Regs

Except. Exception Handlers

OS code/data space

∞/2 (231)

• OS restricts I/O Registers,
Exception Handlers to OS

CS 152 L20 TLB/VM (8) Patterson Fall 2003 © UCB

MIPS Syscall

• How does user invoke the OS?
– syscall instruction: invoke the kernel

(Go to 0x80000080, change to kernel
mode)

– By software convention, $v0 has system
service requested: OS performs request

CS 152 L20 TLB/VM (9) Patterson Fall 2003 © UCB

Instruction Set Support for VM/OS

• How to prevent user program from changing
page tables and go anywhere?
–Bit in Status Register determines whether in
user mode or OS (kernel) mode:
Kernel/User bit (KU) (0 ⇒ kernel, 1 ⇒ user)

Status RegisterAssume Unused IEKU

–On exception/interrupt disable interrupts (IE=0)
and go into kernel mode (KU=0)

• Only change the page table when in kernel
mode (Operating System)

CS 152 L20 TLB/VM (10) Patterson Fall 2003 © UCB

61C Review- Page Table Entry (PTE) Format

• Contains either Physical Page Number
or indication not in Main Memory

• OS maps to disk if Not Valid (V = 0)

• If valid, also check if have permission to
use page: Access Rights (A.R.) may be
Read Only, Read/Write, Executable

...

Page Table
Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.

V A.R. P. P.N.

...

P.T.E.

CS 152 L20 TLB/VM (11) Patterson Fall 2003 © UCB

61C Review- Comparing the 2 levels of hierarchy
Cache Version Virtual Memory vers.
Block or Line Page
Miss Page Fault
Block Size: 32-64B Page Size: 4K-8KB
Placement: Fully Associative
Direct Mapped,
N-way Set Associative
Replacement: Least Recently Used
LRU or Random (LRU)
Write Thru or Back Write Back

CS 152 L20 TLB/VM (12) Patterson Fall 2003 © UCB

61C Review- Notes on Page Table
• Solves Fragmentation problem: all chunks

same size, so all holes can be used
• OS must reserve “Swap Space” on disk for

each process
• To grow a process, ask Operating System

– If unused pages, OS uses them first
– If not, OS swaps some old pages to disk
– (Least Recently Used to pick pages to swap)

• Each process has own Page Table

3

CS 152 L20 TLB/VM (13) Patterson Fall 2003 © UCB

How big is the translation (page) table?

• Simplest way to implement “fully associative”
lookup policy is with large lookup table.

• Each entry in table is some number of bytes, say
4

• With 4K pages, 32- bit address space, need:
232/4K = 220 = 1 Meg entries x 4 bytes = 4MB

• With 4K pages, 64- bit address space, need:
264/4K = 252 entries = BIG!

• Can’t keep whole page table in memory!

Virtual Page Number Page Offset

CS 152 L20 TLB/VM (14) Patterson Fall 2003 © UCB

Large Address Spaces

Two- level Page Tables

32- bit address:

P1 index P2 index page offest

4 bytes

4 bytes

4KB

10 10 12

1K
PTEs

° 2 GB virtual address space
° 4 MB of PTE2

– paged, holes
° 4 KB of PTE1

What about a 48-64 bit address space?

CS 152 L20 TLB/VM (15) Patterson Fall 2003 © UCB

Inverted Page Tables

V.Page P. Frame
hashVirtual

Page

=

IBM System 38 (AS400) implements 64-bit addresses.
48 bits translated
start of object contains a 12-bit tag

=> TLBs or virtually addressed caches are critical

CS 152 L20 TLB/VM (16) Patterson Fall 2003 © UCB

Administrivia
• 8 more PCs in 125 Cory, 3 more boards
• Thur 11/6: Design Doc for Final Project due

– Deep pipeline? Superscalar? Out- of- order?
• Tue 11/11: Veteran’s Day (no lecture)
• Fri 11/14: Demo Project modules
• Wed 11/19: 5:30 PM Midterm 2 in 1 LeConte

– No lecture Thu 11/20 due to evening midterm
• Tues 11/22: Field trip to Xilinx
• CS 152 Project Week: 12/1 to 12/5

– Mon: TA Project demo, Tue: 30 min Presentation,
Wed: Processor racing, Fri: Written report

CS 152 L20 TLB/VM (17) Patterson Fall 2003 © UCB

Making address translation practical: TLB
• Virtual memory => memory acts like a cache for the disk
• Page table maps virtual page numbers to physical frames
• Translation Look-aside Buffer (TLB) is a cache translations

Physical
Memory Space

Virtual
Address Space

TLB

Page Table

2

0

1

3

virtual address

page off

2

frame page

2
50

physical address

page off

CS 152 L20 TLB/VM (18) Patterson Fall 2003 © UCB

Why Translation Lookaside Buffer (TLB)?

• Paging is most popular implementation
of virtual memory
(vs. base/bounds)

• Every paged virtual memory access
must be checked against
Entry of Page Table in memory to
provide protection

• Cache of Page Table Entries (TLB)
makes address translation possible
without memory access in common case
to make fast

4

CS 152 L20 TLB/VM (19) Patterson Fall 2003 © UCB

TLB organization: include protection

• TLB usually organized as fully- associative cache
–Lookup is by Virtual Address
–Returns Physical Address + other info

• Dirty => Page modified (Y/N)?
Ref => Page touched (Y/N)?
Valid => TLB entry valid (Y/N)?
Access => Read? Write?
ASID => Which User?

Virtual Address Physical Address Dirty Ref Valid Access ASID

0xFA00 0x0003 Y N Y R/W 340xFA00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

CS 152 L20 TLB/VM (20) Patterson Fall 2003 © UCB

Paging/Virtual Memory Review
User B:

Virtual Memory

∞

Code

Static

Heap

Stack

0
Code

Static

Heap

Stack

A
Page
Table

B
Page
Table

User A:
Virtual Memory

∞

0
0

Physical
Memory

64 MB

TLB

CS 152 L20 TLB/VM (21) Patterson Fall 2003 © UCB

Example: R3000 pipeline includes TLB stages

Inst Fetch Dcd/ Reg ALU / E.A Memory Write Reg

TLB I-Cache RF Operation WB

E.A. TLB D-Cache

MIPS R3000 Pipeline

ASID V. Page Number Offset

12206

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached
101 Kernel physical space, uncached
11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

Virtual Address Space

TLB
64 entry, on-chip, fully associative, software TLB fault handler

CS 152 L20 TLB/VM (22) Patterson Fall 2003 © UCB

Workstation Microprocessors 3/2001

Source: Microprocessor Report, www.MPRonline.com

• Max issue: 4 instructions (many CPUs)
Max rename registers: 128 (Pentium 4)
Max Window Size (OOO): 126 instructions (Pentium 4)
Max Pipeline: 22/24 stages (Pentium 4)

CS 152 L20 TLB/VM (23) Patterson Fall 2003 © UCB

Cost (Microprocessor Report, 8/25/03)

• 3X die size Pentium 4, 1/3 clock rate Pentium 4
• Cache size (KB): 16+16+256+3076 v. 12+8+512

CS 152 L20 TLB/VM (24) Patterson Fall 2003 © UCB

AMD Opteron Data Path

• Basically an enhanced Athlon
• Predecode bits in L1 instruction cache include

branch prediction.
• L1 data cache now dual ported and can

support two 64- bit stores in one cycle.

From Microprocessor Report
November 26, 2001

“AMD Takes Hammer to Itanium”

5

CS 152 L20 TLB/VM (25) Patterson Fall 2003 © UCB

TLB/VM in P4 vs. Opteron
Intel Pentium P4 AMD Opteron

Virtual address 32 bits 48 bits
Physical address 36 bits 40 bits
Page size 4 KB, 2/4 MB 4 KB, 2/4 MB
Intel:
• 1 TLB for instructions and 1 TLB for data
• Both are 4-way set associative
• Both use Pseudo-LRU replacement
• Both have 128 entries
• TLB misses handled in hardware
AMD:
• 2 TLBs for instructions and 2 TLBs for data
• Both L1 TLBs Fully associative, LRU replacement
• Both L2 TLB 4-way set associativity, Pseudo-LRU
• Both L1 TLBs have 40 entries
• Both L2 TLB have 512 entries
• TLB misses handled in hardware

CS 152 L20 TLB/VM (26) Patterson Fall 2003 © UCB

Peer Instruction

Why do stack buffer overflow attacks work
on Microsoft OS running on IA-32?

1) Code and data are interchangable
2) Bugs in MS operating system
3) Lack of No Execute Page Protection in

IA-32
1.ABC: FFF
2.ABC: FFT
3.ABC: FTF
4.ABC: FTT

5. ABC: TFF
6. ABC: TFT
7. ABC: TTF
8. ABC: TTT

CS 152 L20 TLB/VM (27) Patterson Fall 2003 © UCB

What is the replacement policy for TLBs?
• On a TLB miss, we check the page table for an entry.

Two architectural possibilities:
– Hardware “table-walk” (Sparc, among others)

• Structure of page table must be known to hardware
– Software “table-walk” (MIPS was one of the first)

• Lots of flexibility
• Can be expensive with modern operating systems.

• What if missing Entry is not in page table?
– This is called a “Page Fault”

⇒ requested virtual page is not in memory
– Operating system must take over (CS162)

• pick a page to discard (possibly writing it to disk)
• start loading the page in from disk
• schedule some other process to run

• Note: possible that parts of page table are not even in
memory (I.e. paged out!)
– The root of the page table always “pegged” in memory

CS 152 L20 TLB/VM (28) Patterson Fall 2003 © UCB

MIPS Control Registers
Register CP0 Description

register
number

• EPC 14 Where to restart after exception
• Cause 13 Cause of exception
• BadVAddr 8 Address that caused exception
• Index 0 Location in TLB to be read or written
• Random 1 Pseudo- random location in TLB
• EntryLo 2 Physical page address and flags
• EntryHi 10 Virtual page address
• Context 4 Page Table Address and Page

Number

CS 152 L20 TLB/VM (29) Patterson Fall 2003 © UCB

MIPS TLB Handler

TLBmiss:

mfc0 $k1,Context # copy address of PTE into temp $k1

lw $k1, 0($k1) # put PTE into temp $k1

mtc0 $k1,EntryLo # put PTE into special register EntryLo

tlbwr # put EntryLo into TLB entry at Random

eret # return from TLB miss exception

•The exception transfers to address 8000 0000hex, the
location of the TLB miss handler
• Random implements random replacement, so it is
basically a free- running counter.
•A TLB miss takes about a dozen clock cycles

CS 152 L20 TLB/VM (30) Patterson Fall 2003 © UCB

Page Replacement: Not Recently Used (1-bit LRU, Clock)

Set of all pages
in Memory

Tail pointer:
Mark pages as “not used
recently”

Head pointer:
Place pages on free list if they are still marked
as “not used”. Schedule dirty pages for writing
to disk

Freelist

Free Pages

6

CS 152 L20 TLB/VM (31) Patterson Fall 2003 © UCB

Page Replacement: Not Recently Used (1-bit LRU, Clock)
Associated with each page is a “used” flag such that

used flag = 1 if the page has been referenced in recent past
= 0 otherwise

-- if replacement is necessary, choose any page frame such that its
reference bit is 0. This is a page that has not been referenced in the
recent past

page table entry

page
table
entry

last replaced pointer (lrp)
if replacement is to take place,
advance lrp to next entry (mod
table size) until one with a 0 bit
is found; this is the target for
replacement; As a side effect,
all examined PTE's have their
used bits set to zero.

1 0

Or search for the a page that is both
not recently referenced AND not dirty.

useddirty

Architecture part: support dirty and used bits in the page table
=> may need to update PTE on any instruction fetch, load, store

How does TLB affect this design problem? Software TLB miss?

page fault handler:

1 0
0 1
1 1
0 0

CS 152 L20 TLB/VM (32) Patterson Fall 2003 © UCB

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap TLB
lookup with cache access.
– Works because lower bits of result (offset) available early

Reducing translation time further

Virtual Address

TLB Lookup

V
Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

CS 152 L20 TLB/VM (33) Patterson Fall 2003 © UCB

TLB 4K Cache

10 2

00

4 bytes

index
1 K

page # disp
20

assoc
lookup

32

Hit/
Miss

FN Data Hit/
Miss

=FN

What if cache size is increased to 8KB?

• If we do this in parallel, we have to be
careful, however:

Overlapped TLB & Cache Access

CS 152 L20 TLB/VM (34) Patterson Fall 2003 © UCB

Overlapped access only works as long as the address bits used to
index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is
increased to 8 K bytes instead of 4 K:

11 2

00

virt page # disp
20 12

cache
index

This bit is changed
by VA translation, but
is needed for cache
lookup

Solutions:
go to 8K byte page sizes;
go to 2 way set associative cache; or
SW guarantee VA[13]=PA[13]

1K

4 4
10

2 way set assoc cache

Problems With Overlapped TLB Access

CS 152 L20 TLB/VM (35) Patterson Fall 2003 © UCB

Only require address translation on cache miss!

synonym problem: two different virtual addresses map to same
physical address => two different cache entries holding data for
the same physical address!

nightmare for update: must update all cache entries with same
physical address or memory becomes inconsistent

data

CPU Trans-
lation

Cache

Main
Memory

VA

hit

PA

Another option: Virtually Addressed Cache

CS 152 L20 TLB/VM (39) Patterson Fall 2003 © UCB

VM Performance

• VM invented to enable a small memory
to act as a large one but ...

• Performance difference disk and
memory =>a program routinely accesses
more virtual memory than it has physical
memory it will run very slowly.
– continuously swapping pages between

memory and disk, called thrashing.
• Easiest solution is to buy more memory
• Or re-examine algorithm and data

structures to see if reduce working set.

7

CS 152 L20 TLB/VM (40) Patterson Fall 2003 © UCB

TLB Performance
• Common performance problem: TLB misses.
• TLB 32 to 64 => a program could easily see a

high TLB miss rate since < 256 KB
• Most ISAs now support variable page sizes

– MIPS supports 4 KB,16 KB, 64 KB, 256 KB, 1
MB, 4 MB, 16 MB, 64, MB, and 256 MB pages.

– Practical challenge getting OS to allow programs
to select these larger page sizes

• Complex solution is to re-examine the
algorithm and data structures to reduce the
working set of pages

CS 152 L20 TLB/VM (41) Patterson Fall 2003 © UCB

Summary #1 / 2 Things to Remember
• Virtual memory to Physical Memory

Translation too slow?
– Add a cache of Virtual to Physical Address

Translations, called a TLB
– Need more compact representation to reduce

memory size cost of simple 1- level page table
(especially 32- ⇒ 64- bit address)

• Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

• Virtual Memory allows protected sharing
of memory between processes with less
swapping to disk

CS 152 L20 TLB/VM (42) Patterson Fall 2003 © UCB

Summary #2 / 2: TLB/Virtual Memory
• VM allows many processes to share single memory

without having to swap all processes to disk
• Translation, Protection, and Sharing are more

important than memory hierarchy
• Page tables map virtual address to physical

address
– TLBs are a cache on translation and are extremely

important for good performance
– Special tricks necessary to keep TLB out of critical cache-

access path
– TLB misses are significant in processor performance:

• These are funny times: most systems can’t access all of 2nd level
cache without TLB misses!

