CS152 — Computer Architecture and
Engineering
Lecture 20 — TLB/Virtual memory

2003-11-04

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

ﬂ CS 152 L20 TLB/VM (1) Patterson Fall 2003 © UCB

Review
* |A-32 OOOQ processors
— HW translation to RISC operations
— Superpipelined P4 with 22-24 stages vs. 12 stage Opteron
— Trace cache in P4
— SSEZ2 increasing floating point performance

* Very Long Instruction Word machines (VLIW)
= Multiple operations coded in single, long instruction

— EPIC as a hybrid between VLIW and traditional
pipelined computers

— Uses many more registers

+ 64-bit: New ISA (IA-64) or Evolution (AMD64)?
— 64-bit Address space needed larger DRAM memory

ﬂ CS 152 L20 TLB/VM (2) Patterson Fall 2003 © UCB

61C Review- Three Advantages of Virtual Memory

1) Translation:

— Program can be given consistent view of memory,
even though physical memory is scrambled

— Makes multiple processes reasonable

— Only the most important part of program
("Working Set”) must be in physical memory

— Contiguous structures (like stacks) use only as
much physical memory as necessary yet still
grow later

ﬂ CS 152 L20 TLB/VM (3) Patterson Fall 2003 © UCB

61C Review- Three Advantages of Virtual Memory

2) Protection:
— Different processes protected from each other

— Different pages can be given special behavior
« Read Only, No execute, Invisible to user programs,...

— Kernel data protected from User programs

— Very important for protection from malicious programs =
Far more “viruses” under Microsoft Windows

— Special Mode in processor (“Kernel more™) allows
processor to change page table/TLB

3) Sharing:

— Can map same physical page to multiple users
(“Shared memory”)

ﬂ CS 152 L20 TLB/VM (4) Patterson Fall 2003 © UCB

Issues in Virtual Memory System Design

What is the size of information blocks that are transferred from secondary

to main storage (M)? = page size
(Contrast with physical block size on disk, l.e. sector size)

Which region of M is to hold the new block = placement policy

How do we find a page when we look for it? = block identification

Block of information brought into M, and M is full, then some region of M

must be released to make room for the new block

= replacement policy

What do we do on a write? = write policy

Missing item fetched from secondary memory only on the occurrence of a

fault = demand load policy

mem

cache

A
v
A
v

reg

frame

A

Q CS 152 L20 TLB/VM (5)

A\ 4

disk

pages

Patterson Fall 2003 © UCB

Kernel/User Mode

* Generally restrict device access, page
table to OS

« HOW?
 Add a “mode bit” to the machine: K/U

* Only allow SW in “kernel mode” to
access device registers, page table

* |f user programs could access I/O
devices and page tables directly?
— could destroy each others data, ...
— might break the devices, ...

ﬂ CS 152 L20 TLB/VM (6) Patterson Fall 2003 © UCB

Note: Actual MIPS Process Memory Allocation

I/O device registers

Address

00 (2%2-1) /O Regs
Except.

f2 (2%)
co/2 (231-1) Stack

$sp __,

I

Heap

(

0

Code

CS 152 L20 TLB/VM (7)

OS code/data space

Exception Handlers

User code/data space

* OS restricts 1/0O Registers,
Exception Handlers to OS

Patterson Fall 2003 © UCB

MIPS Syscall

* How does user invoke the OS?

—syscal | instruction: invoke the kernel

(Go to 0x80000080, change to kernel
mode)

— By software convention, $v0 has system
service requested: OS performs request

ﬂ CS 152 L20 TLB/VM (8) Patterson Fall 2003 © UCB

Instruction Set Support for VM/OS

* How to prevent user program from changing
page tables and go anywhere?
—Bit in Status Register determines whether in

user mode or OS (kernel) mode:
Kernel/User bit (KU) (0 = kernel, 1 = user)

Assume Unused KU [IE Status Register

—On exception/interrupt disable interrupts (IE=0)
and go into kernel mode (KU=0)

* Only change the page table when in kernel
2 mode (Operating System)

CS 152 L20 TLB/VM (9) Patterson Fall 2003 © UCB

61C Review- Page Table Entry (PTE) Format

» Contains either Physical Page Number
or indication not in Main Memory

« OS mapﬁ_tg)_d.L?_L_I_s_iJ‘_ISI_Q_tALan.d1 (V =0)

Page Table vV AR. P P.N. l\
Val i Access :Physical
-id :Rights :Page PTE
: : Number "l

Vi AR iP.P.N. |‘/

* If valid, also check if have permission to
use page: Access Rights (A.R.) may be
Read Only, Read/Write, Executable

CS 152 L20 TLB/VM (10) Patterson Fall 2003 © UCB

(

61C Review- Comparing the 2 levels of hierarchy

Cache Version Virtual Memory vers.
Block or Line Page

Miss Page Fault

Block Size: 32-64B Page Size: 4K-8KB
Placement: ~ully Associative

Direct Mapped,
N-way Set Associative

Replacement: Least Recently Used
LRU or Random (LRU)

Write Thru or Back Write Back

ﬂ CS 152 L20 TLB/VM (11) Patterson Fall 2003 © UCB

61C Review- Notes on Page Table

» Solves Fragmentation problem: all chunks
same size, so all holes can be used

 OS must reserve “Swap Space” on disk for
each process

* To grow a process, ask Operating System
— If unused pages, OS uses them first
— If not, OS swaps some old pages to disk
— (Least Recently Used to pick pages to swap)

« Each process has own Page Table

ﬂ CS 152 L20 TLB/VM (12) Patterson Fall 2003 © UCB

How big is the translation (page) table”?

Virtual Page Number Page Offset

Simplest way to implement “fully associative”
lookup policy is with large lookup table.

Each entry in table is some number of bytes, say
4

With 4K pages, 32- bit address space, need:
232/4K = 220 = 1 Meg entries x 4 bytes = 4MB

With 4K pages, 64-bit address space, need:
264/4K = 252 entries = BIG!

Can'’t keep whole page table in memory!

Q CS 152 L20 TLB/VM (13) Patterson Fall 2003 © UCB

Large Address Spaces

Two-level Page Tables

4KB
32-bit address:

10 10 12
P1 index P2 index page offest

° 2 GB virtual address space
°4 MB of PTE2

— paged, holes
°4 KB of PTE1

What about a 48-64 bit address space? __» 4bytes «—

Q CS 152 L20 TLB/VM (14) Patterson Fall 2003 © UCB

Inverted Page Tables

IBM System 38 (AS400) implements 64-bit addresses.
48 bits translated
start of object contains a 12-bit tag

AN

o

=> TLBs or virtually addressed caches are critical

ﬂ CS 152 L20 TLB/VM (15) Patterson Fall 2003 © UCB

. V.Page P|Frame
Virtual hash g

Page

Administrivia
* 8 more PCs in 125 Cory, 3 more boards

* Thur 11/6: Design Doc for Final Project due
— Deep pipeline? Superscalar? Out-of-order?

* Tue 11/11: Veteran’s Day (no lecture)
* Fri 11/14. Demo Project modules

 Wed 11/19: 5:30 PM Midterm 2 in 1 LeConte
— No lecture Thu 11/20 due to evening midterm

* Tues 11/22: Field trip to Xilinx

« CS 152 Project Week: 12/1 to 12/5

— Mon: TA Project demo, Tue: 30 min Presentation,
Wed: Processor racing, Fri: Written report

CS 152 L20 TLB/VM (16) Patterson Fall 2003 © UCB

Making address translation practical: TLB

« Virtual memory => memory acts like a cache for the disk
« Page table maps virtual page numbers to physical frames
« Translation Look-aside Buffer (TLB) is a cache translations

virtual address

page off

Virtual Physical

Address Space Memory Space Page Table

> P

physical address

page off

CS 152 L20 TLB/VM (17) Patterson Fall 2003 © UCB

Why Translation Lookaside Buffer (TLB)?

* Paging is most popular implementation
of virtual memory
(vs. base/bounds)

* Every paged virtual memory access
must be checked against
Entry of Page Table in memory to
provide protection

» Cache of Page Table Entries (TLB)
makes address translation possible
without memory access in common case
to make fast

CS 152 L20 TLB/VM (18) Patterson Fall 2003 © UCB

TLB organization: include protection

Virtual Address Phﬂsical Address Dirty Ref Valid | Access ASID

OxFAOQO 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

* TLB usually organized as fully-associative cache
—Lookup is by Virtual Address
—Returns Physical Address + other info

* Dirty => Page modified (Y/N)?

Ref => Page touched (Y/N)?

Valid => TLB entry valid (Y/N)?

Access => Read? Write?

ASID => Which User?

CS 152 L20 TLB/VM (19) Patterson Fall 2003 © UCB

Paging/Virtual Memory Review

User A:

Virtual Memory

v

00 Physical
Memory
\ 64 MB

TLB

LV

Static

LCade |

A
Page
Table O

CS 152 L20 TLB/VM (20)

Page
Table

User B:

Virtual Memory

(09

Static

Patterson Fall 2003 © UCB

Example: R3000 pipeline includes TLB stages

MIPS R3000 Pipeline

Inst Fetch Dcd/ Reg ALU / EA Memory Write Reg

TLB I-Cache RF Operatipn

E.A. TLB DfCache

TLB
64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

ASID V. Page Number Offset

6 20 12
1 | |

Oxx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached

11x Kernel virtual space

Allows context switching among
64 user processes without TLB flush

CS 152 L20 TLB/VM (21) Patterson Fall 2003 © UCB

Workstation Microprocessors 3/2001

Processor vl Il e e e
Clock Rate | 833MHz 1.2GHz 552MHz | 450MHz 1.0GHz
Cache (I/D/L2Y | adifadK | 64K G4 256K 512K/ 1M 32K/64K [Tek/MMeks/ 256K
|lssue Rate 4 issug 3 xB6 instr 4 issue 4 issue 3 xBG instr
Pipeline Stages | 7/9 stages | 9/11 stages | 7/9stages |7/8 stages | 12/14 stages
{Out of Order 80 instr 72ROPs 56 instr 32 instr 40 ROPs
Rename regs 48/41 36/36 56 total 16int/24 fp | 40 total

_ - . . W PSR

TLE Entries 128/128 ‘ 120 unified | 128/128 321 / 64D

=0 0 RaT: L0 BRELYTEE oLt

Package CPOA-98E PA-462 LSA-544 | SCC-1088 POA-370

[ICProcess | 018uem | 018u6m | 0.2512M | 0.22u6m | 0.18u 6M
Die Size 116mm? 117mm? 477 mm? 163mm? 106mm?
Transistors | 15.4 million] 37 million) 130 million | 23 million | 24 million
Est mfg cost® 160 §62 §330 5110 $39
Power(Max) | 75wW* Tew B0V * IEW* 30w
Availability 1001 400 3000 400 2000

Intel

Pentium
1.5GHz
12K/8K/ 256K
3 x ROPs
22/24 stages
126 ROPs
128 total

1281/650
POA-423
0.18p &M
217mm?
47 million
2110
55WI(TDP)
000

* Max issue: 4 instructions (many CPUs)
Max rename registers: 128 (Pentium 4)
Max Window Size (O0OO): 126 instructions (Pentium 4)
Max Pipeline: 22/24 stages (Pentium 4)

MIPS Sun Sun
1A LI = -
400MHz | 480MHz S00MHz
F2K/32K 16K EK 264K
4 issue 4 issue 4 issue
6 stages | 659 stages 14515 stages
48 instr Maone Mone
32732 Maone Mone
64 unified | edlfedD 1281/5120
R T L L = T e XA T
CPOA-52T | CLGA-787 (13688 FC-LGA
0251 4M | 02%p M | 0181 7M
20dmm? | 126 mm’ 210mm?*
7.2 million | 3.8 million | 29 million
3125 §70 §145
2EE 200 a5V
2000 300 4Q00

Source: Microprocessor Report, www.MPRonline.com

CS 152 L20 TLB/VM (22)

Patterson Fall 2003 © UCB

Cost (Microprocessor Report, 8/25/03)

2170Hz

Clock Rate | 1.15GHz

Cache GAK/GAKS | BAK/GAK/
(I/D/L2/L3) 1750 512K
Issue Rate 4 issue 3 x86 instr
Pipeline Stages| 7/9 stages | 9/11 stages
Out of Order | 80 instr 72ROPs
Rename Regs 48/41 In/36
TLE Entries 128/128 280/288
TETTTOTy BT W .
Package FC-LGA-1443 PGA-462
IC Process | 0.18xm 7M| 0.13xm 6
Die Size 397mm? 101 mm?
Transistors | 135 million || 54.3 million
Est Die Cost 180+ 6™
Power (Max) | 110W* | 76W{MTP)
Availability 1003 :

8700
870MHz
FROKS
1.5M
4 issue
F/9 stages
56 instr
56 total

240 unified

LOA-544
0.18xm 7M
30dmm’
130 million
195"
7EW*

1.45CHz
B4k 32K
1.5ME
B issue
12/17 stages
200 instr
4840

1,024 unified

TR
FACAA
013 xm 7m
267mm*"’
184 million®*
$144%*
Eﬁ'w**

1.0Hz | 2.00Hz | 3.06CHz

3002

4002

1.05CGHz
A7E/EAK

4 issue
1415 stages
Mone
Mone
m
1281/5120

e ETRUETE
FC-LGA 1368
0. 15=m 7
210mm?
29 million
g2
TEM*

G00MHz
16K TakS 12KSEKS 12K/8KS
256K/3M 512K/2M 512K 32k/32K
B lssue IROPs | 3 ROPs 4 issue
B stages 2234 stages 232/24 stages] 6 stages
None | 126ROPs | 126 ROPs | 48instr
328 total 128 total 128 total 32/32
HL;E'E EL:;' D/ 12817640 | 12817640 | 64 unified
mPGA-700 = mPGA-603 | PGA-423 |FCBGA-1153
0.18xm6M | 0.13=m 6M| 0.13xm 6M] 0.15xm 7M
418mm** 211 mm? 131mm* 142mm’
221 million | 160 million*| 55 million | 7.2 million
166 ted* $55* 68"
130W | 65W(Max) | BIW(TDP) | 16wW*
3002 1003 4002 2002

o 3X die size Pentium 4, 1
« Cache size (KB): 16+16+256+3076 v. 12+8+512

CS 152 L20 TLB/VM (23)

1002

/3 clock rate Pentium 4

Patterson Fall 2003 © UCB

AMD Opteron Data Path

. Ad0-entry | 64K, 2-way, Predecoded 2K
| Instruction TLE | Level 1 Instruction Cache Eranch
Targets
Level 2 Fetch 2 - Transit 16k
Cache [History
Counter
RAS .
Peocde T & From Microprocessor Report
H = ~ Target Address November 26, 2001
L2 ECC Decode 2 “AMD Takes Hammer to Itanium”
L2 Tags
_ L2 Tag ECC _
System Request —]
—pp— ! ! T 11
v 1 : | gentry || 8-ent 8-en 36-entry
Sloss Bax Scheduler Scheduler ‘ Schedt%r ‘ | Scheduler I

T TS

Memory Controller| [AGﬂ |_A.!.U lacu || aw |[acu || Aaw || FADD|[FMﬂ|FM|5C|
|

HyperTranspurt

40-entry, per port | 64K, Dual-Ported, 2-way | -
Data TLE Level 1 Data Cache

e

« Basically an enhanced Athlon

 Predecode bits in L1 instruction cache include
branch prediction.

« L1 data cache now dual ported and can
support two 64-bit stores in one cycle.

CS 152 L20 TLB/VM (24) Patterson Fall 2003 © UCB

(

LB/VM in P4 vs. Opteron

Intel Pentium P4 AMD Opteron

Virtual address 32 bits 48 bits
Physical address 36 bits 40 bits
Page size 4 KB, 2/4 MB 4 KB, 2/4 MB
Intel:

« 1 TLB for instructions and 1 TLB for data

 Both are 4-way set associative

 Both use Pseudo-LRU replacement

 Both have 128 entries

« TLB misses handled in hardware

AMD:

« 2 TLBs for instructions and 2 TLBs for data

« Both L1 TLBs Fully associative, LRU replacement
- Both L2 TLB 4-way set associativity, Pseudo-LRU
« Both L1 TLBs have 40 entries

- Both L2 TLB have 512 entries

QLB misses handled in hardware
CS 152 L20 TLB/VM (25) Patterson Fall 2003 © UCB

Peer Instruction

Why do stack buffer overflow attacks work
on Microsoft OS running on |A-327

1) Code and data are interchangable
2) Bugs in MS operating system
3) Lack of No Execute Page Protection in
|1A-32
1.ABC: FFF 5. ABC: TFF
2.ABC: FFT 6. ABC: TFT

3.ABC: FTF 7. ABC: TTF
4 ABC: FTT 8. ABC:TTT

ﬂ CS 152 L20 TLB/VM (26) Patterson Fall 2003 © UCB

What is the replacement policy for TLBs?

 On a TLB miss, we check the page table for an entry.
Two architectural possibilities:
— Hardware “table-walk” (Sparc, among others)
« Structure of page table must be known to hardware
— Software “table-walk” (MIPS was one of the first)
* Lots of flexibility
« Can be expensive with modern operating systems.
« What if missing Entry is not in page table?
— This is called a “Page Fault’
= requested virtual page is not in memory
— Operating system must take over (CS162)
» pick a page to discard (possibly writing it to disk)
« start loading the page in from disk
» schedule some other process to run

* Note: possible that parts of page table are not even in
memory (l.e. paged out!)

— The root of the page table always “pegged” in memory

ﬂ CS 152 L20 TLB/VM (27) Patterson Fall 2003 © UCB

MIPS Control Registers
Register CPO Description

register

number
« EPC 14 Where to restart after exception
« Cause 13 Cause of exception
 BadVAddr 8 Address that caused exception
* |ndex 0 Location in TLB to be read or written
« Random 1 Pseudo- random location in TLB
« EntryLo 2 Physical page address and flags
 EntryHi 10 Virtual page address
« Context 4 Page Table Address and Page

Number

ﬂ CS 152 L20 TLB/VM (28)

Patterson Fall 2003 © UCB

MIPS TLB Handler

TLBm ss:

nfcO $kl1, Context # copy address of PTE into tenp $kl

lw $k1, 0O(%$k1l) # put PTE into tenp $kl

nmcO $k1,EntryLo # put PTE into special register EntryLo
t1 bwr # put EntryLo into TLB entry at Random
er et # return from TLB m ss exception

*The exception transfers to address 8000 0000, the
location of the TLB miss handler

« Randomimplements random replacement, so it is
basically a free-running counter.

A TLB miss takes about a dozen clock cycles

ﬂ CS 152 L20 TLB/VM (29) Patterson Fall 2003 © UCB

Page Replacement: Not Recently Used (1-bit LRU, Clock)

— Tail pointer:
> 8 Mark pages as “not used

/ \ recently”
/

I Set of all pages

tof |
\ in Memory /
\ /

\\’-) / Freelist

Head pointer:

Place pages on free list if they are still marked
as “not used”. Schedule dirty pages for writing l
to disk
Free Pages

ﬂ CS 152 L20 TLB/VM (30) Patterson Fall 2003 © UCB

Page Replacement: Not Recently Used (1-bit LRU, Clock)

Associated with each page is a “used” flag such that

used flag =1 if the page has been referenced in recent past
= 0 otherwise

-- if replacement is necessary, choose any page frame such that its

reference bit is 0. This is a page that has not been referenced in the
recent past

dirty [used page fault handler:
1 |0 page table entry «— |ast replaced pointer (Irp)
1 0 if replacement is to take place,
advance Irp to next entry (mod
‘l?aal;",g 0 |1 table size) until one with a 0 bit
ent 1 11 e is found; this is the target for
ry ' replacement; As a side effect,
0 |0 all examined PTE's have their
used bits set to zero.

Or search for the a page that is both

not recently referenced AND not dirty.
Architecture part: support dirty and used bits in the page table
=> may need to update PTE on any instruction fetch, load, store
How does TLB affect this design problem? Software TLB miss?

CS 152 L20 TLB/VM (31) Patterson Fall 2003 © UCB

Reducing translation time further

* As described, TLB lookup is in serial with cache lookup:

Virtual Address

V page no. offset
TLB Lookup
. ATTESS
*| V '’/ Rights PA

P page no.

offset

10

Physical Address

* Machines with TLBs go one step further: they overlap TLB
lookup with cache access.

ﬂ CS 152 L20 TLB/VM (32)

Works because lower bits of result (offset) available early

Patterson Fall 2003 © UCB

Overlapped TLB & Cache Access

* If we do this in parallel, we have to be
careful, however:

assoc
lookup
J index
32 TLB < | ‘ > 4K Cache 1K
20 10 2 «—— 4 bytes —»
page # disp |[go
Hit/ A
Miss \ /
FN @ FN Data Hit/
Miss
v l v

What if cache size is increased to 8KB?

Q CS 152 L20 TLB/VM (33) Patterson Fall 2003 © UCB

Problems With Overlapped TLB Access

Overlapped access only works as long as the address bits used to
index into the cache do not change as the result of VA translation

This usually limits things to small caches, large page sizes, or high
n-way set associative caches if you want a large cache

Example: suppose everything the same except that the cache is

increased to 8 K bytes instead of 4 K:

—11 — 2

cache
index

00

20

12

virt page #

disp

Solutions:

go to 8K byte page sizes;

go to 2 way set associative cache; or

SW guarantee VA[13]=PA[13]

10

(

CS 152 L20 TLB/VM (34)

This bit is changed
by VA translation, but
is needed for cache
lookup

1K 2 way set assoc cache

|

Patterson Fall 2003 © UCB

Another option: Virtually Addressed Cache

VA PA R
CPU Trans- Main
lation Memory
—>

Cache |,

hit

\ 4
data

Only require address translation on cache miss!

synonym problem: two different virtual addresses map to same
physical address => two different cache entries holding data for
the same physical address!

nightmare for update: must update all cache entries with same
physical address or memory becomes inconsistent

ﬂ CS 152 L20 TLB/VM (35) Patterson Fall 2003 © UCB

(

VM Performance

VM invented to enable a small memory
to act as a large one but ...

Performance difference disk and
memory =>a program routinely accesses
more virtual memory than it has physical
memory it will run very slowly.

— continuously swapping pages between
memory and disk, called thrashing.

Easiest solution is to buy more memory

Or re-examine algorithm and data
structures to see if reduce working set.

CS 152 L20 TLB/VM (39) Patterson Fall 2003 © UCB

LB Performance

 Common performance problem: TLB misses.

 TLB 32 to 64 => a program could easily see a
high TLB miss rate since < 256 KB

* Most ISAs now support variable page sizes

— MIPS supports 4 KB,16 KB, 64 KB, 256 KB, 1
MB, 4 MB, 16 MB, 64, MB, and 256 MB pages.

— Practical challenge getting OS to allow programs
to select these larger page sizes

« Complex solution is to re-examine the
algorithm and data structures to reduce the

2 %orki ng set of pages
CS 152 L20 TLB/VM (40) Patterson Fall 2003 © UCB

Summary #1 / 2 Things to Remember

* Virtual memory to Physical Memory
Translation too slow?

— Add a cache of Virtual to Physical Address
Translations, called a TLB

— Need more compact representation to reduce
memory size cost of simple 1-level page table
(especially 32- = 64-bit address)

« Spatial Locality means Working Set of
Pages is all that must be in memory for
process to run fairly well

* Virtual Memory allows protected sharing
of memory between processes with less
ﬂswapping to disk

CS 152 L20 TLB/VM (41) Patterson Fall 2003 © UCB

Summary #2 / 2. TLB/Virtual Memory

* VM allows many processes to share single memory
without having to swap all processes to disk

* Translation, Protection, and Sharing are more
important than memory hierarchy

« Page tables map virtual address to physical
address

— TLBs are a cache on translation and are extremely
important for good performance

— Special tricks necessary to keep TLB out of critical cache-
access path

— TLB misses are significant in processor performance:

* These are funny times: most systems can’t access all of 2nd level
ﬂ cache without TLB misses!

CS 152 L20 TLB/VM (42) Patterson Fall 2003 © UCB

