CS152 – Computer Architecture and Engineering Lecture 21 – Buses and Networks

2003-11-06

Dave Patterson

(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

Review #1 / 2 Things to Remember

- Virtual memory to Physical Memory Translation too slow?
 - Add a cache of Virtual to Physical Address Translations, called a TLB
 - Need more compact representation to reduce memory size cost of simple 1-level page table (especially 32- ⇒ 64-bit address)
- Spatial Locality means Working Set of Pages is all that must be in memory for process to run fairly well
- Virtual Memory allows protected sharing of memory between processes with less swapping to disk

Review #2 / 2: TLB/Virtual Memory

- VM allows many processes to share single memory without having to swap all processes to disk
- Translation, Protection, and Sharing are more important than memory hierarchy
- Page tables map virtual address to physical address
 - TLBs are a cache on translation and are extremely important for good performance
 - Special tricks necessary to keep TLB out of critical cacheaccess path
 - TLB misses are significant in processor performance:
 - These are funny times: most systems can't access all of 2nd level cache without TLB misses!

Administrivia

- Design Doc for Final Project due
 - Thur 11/6 if finished lab 6 Friday or Monday
 - Mon 11/10 if finished lab 6 Tuesday or later
- Tue 11/11: Veteran's Day (no lecture)
- Fri 11/14: Demo Project modules
- Wed 11/19: 5:30 PM Midterm 2 in 1 LeConte
 - No lecture Thu 11/20 due to evening midterm
- Tues 11/22: Field trip to Xilinx
- CS 152 Project Week: 12/1 to 12/5
 - Mon: TA Project demo, Tue: 30 min Presentation,
 Wed: Processor races, Thu: lecture, Fri: Report

What is a bus?

A Bus Is:

- shared communication link
- single set of wires used to connect multiple subsystems

- A Bus is also a fundamental tool for composing large, complex systems
 - systematic means of abstraction

Buses: PCI

Advantages of Buses

Versatility:

- New devices can be added easily
- Peripherals can be moved between computer systems that use the same bus standard

Low Cost:

A single set of wires is shared in multiple ways

Disadvantage of Buses

- It creates a communication bottleneck
 - The bandwidth of that bus can limit the maximum I/O throughput
- The maximum bus speed is largely limited by:
 - The length of the bus
 - The number of devices on the bus
 - The need to support a range of devices with:
 - Widely varying latencies
 - Widely varying data transfer rates

The General Organization of a Bus

- Control lines:
 - Signal requests and acknowledgments
 - Indicate what type of information is on the data lines
- Data lines carry information between the source and the destination:
 - Data and Addresses
 - Complex commands

Master versus Slave

- A <u>bus transaction</u> includes two parts:
 - Issuing the command (and address) request
 - Transferring the dataaction
- Master is the one who starts the bus transaction by:
 - issuing the command (and address)
- Slave is the one who responds to the address by:
 - Sending data to the master if the master ask for data
 - Receiving data from the master if the master wants to send data

Types of Buses

- Processor-Memory Bus (design specific)
 - Short and high speed
 - Only need to match the memory system
 - Maximize memory-to-processor bandwidth
 - Connects directly to the processor
 - Optimized for cache block transfers
- I/O Bus (industry standard)
 - Usually is lengthy and slower
 - Need to match a wide range of I/O devices
 - Connects to the processor-memory bus or backplane bus
- Backplane Bus (standard or proprietary)
 - Backplane: an interconnection structure within the chassis
 - Allow processors, memory, and I/O devices to coexist
 - Cost advantage: one bus for all components

A Computer System with 1 Bus: Backplane Bus

- A single bus (the backplane bus) is used for:
 - Processor to memory communication
 - Communication between I/O devices and memory
- Advantages: Simple and low cost
- Disadvantages: slow and the bus can become a major bottleneck
- Example: IBM PC AT

A Two-Bus System

- I/O buses tap into the processor-memory bus via bus adaptors:
 - Processor-memory bus: mainly for processor-memory traffic
 - I/O buses: provide expansion slots for I/O devices
- Apple Macintosh-II
 - NuBus: Processor, memory, and a few selected I/O devices
 - SCCI Bus: the rest of the I/O devices

A Three-Bus System (+ backside cache)

- A small number of backplane buses tap into the processormemory bus
 - Processor-memory bus is only used for processor-memory traffic
 - I/O buses are connected to the backplane bus
- Advantage: loading on the processor bus is greatly reduced

What defines a bus?

Main components of Intel Chipset: Pentium III

 Northbridge: a DMA controller, connecting the processor to memory, the AGP graphic bus, and the south bridge chip

Southbridge: I/O

- PCI bus
- Disk controllers
- USB controlers
- Audio
- Serial I/O
- Interrupt controller

Timers

What is DMA (Direct Memory Access)?

- Typical I/O devices must transfer large amounts of data to memory of processor:
 - Disk must transfer complete block
 - Large packets from network
 - Regions of frame buffer
- DMA gives external device ability to access memory directly: much lower overhead than having processor request one word at a time.
- Issue: Cache coherence:
 - What if I/O devices write data that is currently in processor Cache?
 - The processor may never see new data!
 - Solutions:
 - Flush cache on every I/O operation (expensive)
 - Have hardware invalidate cache lines (remember "Coherence" cache misses?)

Main components of Intel Chipset: Pentium 4

I/O Chip Sets Customize Processor to App

875P Chip set	845GL Chip set		
Performance PC	Value PC		
800/533 MHz	400 MHz		
Memory Controller Hub ("North bridge")			
42.5 x 42.5 mm, 1005	37.5 x 37.5 mm, 760		
DDR 400/333/266 SDRAM	I DDR 266/200, PC133 SDRAM		
2 x 72	1 x 64		
4 GB	2 GB		
Yes	No		
Yes, 8X or 4X	No		
External	Internal (Extreme Graphics)		
Yes	No		
266 MHz	266 MHz		
	Performance PC 800/533 MHz Controller Hub ("North brid 42.5 x 42.5 mm, 1005 DDR 400/333/266 SDRAW 2 x 72 4 GB Yes Yes, 8X or 4X External Yes		

I/O Controller Hub ("South bridge")		
Package size, pins	31 x 31 mm, 460	31 x 31 mm, 421
PCI bus: width, speed, masters	32-bit, 33 MHz, 6 masters	32-bit, 33 MHz, 6 masters
Ethernet MAC controller, interface	100/10 Mbit	100/10 Mbit
USB 2.0 ports, controllers	8, 4	6, 3
ATA 100 ports	2	2
Serial ATA 150 controller, ports	Yes, 2	No
RAID 0 controller	Yes	No
AC-97 audio controller, interface	Yes	Yes
management	SMbus 2.0, GPIO	SMbus 2.0, GPIO

Networks

- Networks are major medium used to communicate between computers. Key characteristics of typical networks:
- Distance: 0.01 to 10,000 kilometers
 Local Area Network (LAN) <1 km vs.
 Wide Area Network (WAN) to 10000 km
- Speed: 0.001 MB/sec to 100 MB/sec
- Topology: Bus, ring, star, tree
- Shared lines: None (switched point-to-point) or shared (multidrop)

Protocols: HW/SW Interface

- Internetworking: allows computers on independent and incompatible networks to communicate reliably and efficiently;
 - Enabling technologies: SW standards that allow reliable communications without reliable networks
 - Hierarchy of SW layers, giving each layer responsibility for portion of overall communications task, called protocol families or protocol suites
- Transmission Control Protocol/Internet Protocol (TCP/IP)
 - This protocol family is the basis of the Internet
 - IP makes best effort to deliver; TCP guarantees delivery
 - TCP/IP used even when communicating locally: NFS uses IP even though communicating across homogeneous LAN

Protocol

- Key to protocol families is that communication occurs logically at the same level of the protocol, called peer-to-peer, but is implemented via services at the lower level
- Danger is each level increases latency if implemented as hierarchy (e.g.,
 multiple check sums)

Open Systems Interconnect (OSI)

Open Systems Interconnect (OSI)
 developed a model that popularized
 describing networks as a series of 7 layers

TCP/IP packet

- Application sends message
- TCP breaks into 64KB segements, adds 20B header
- IP adds 20B header, sends to network
- If Ethernet, broken into 1500B packets with headers, trailers
- Header, trailers have length field, destination, window number, version, ...

FTP From Stanford to Berkeley

- BARRNet is WAN for Bay Area
- T1 is 1.5 mbps leased line; T3 is 45 mbps; FDDI is 100 mbps LAN
- IP sets up connection, TCP sends file

Long Haul Networks (or WANs)

- 10 km to 10,000 km
- packet-switch: At each hop, a packet is stored (for recovery in case of failure) and then forwarded to the proper target according to the address in the packet.
- Destination systems reassembles packets into a message.
- Most networks today use packet switching, where packets are individually routed from source to destination.

Connecting Networks

- Routers or Gateways: these devices connect LANs to WANs or WANs to WANs and resolve incompatible addressing.
 - Generally slower than bridges, they operate at the internetworking protocol (IP) level: OSI layer 3
 - Routers divide the interconnect into separate smaller subnets, which simplifies manageability and improves security
- Bridges: connect LANs together, passing traffic from one side to another depending on the addresses in the packet
 - operate at the Ethernet protocol level: OSI layer 2
 - usually simpler and cheaper than routers
- Hubs: extend multiple segments into 1 LAN.
 - Only transmit one message can at a time
 - operate at the Physical level: OSI layer 1

Local Area Networks: Ethernet

- Ethernet packets vary 64 to 1518 Bytes
- Ethernet link speed available at 10M, 100M, and 1000M bits/sec, with 10,000M bits/sec available soon
- Although 10M and 100M bits/sec can share the media with multiple devices, 1000M bits/sec and above relies on point-to-point links and switches

Network Media

Wireless Local Area Networks

- IEEE 802.11("WiFi") extended Ethernet to communicate through the air. 3 variations:
 - -802.11b, peak of 11 Mbits/second
 - 802.11a, peak of 54 Mbits/second
 - 802.11g, peak of 22 Mbits/second
- In practice, the delivered rates in the field are about a third of the peak rates in the lab.
- It replaces the bottom layers of the OSI standard, which Ethernet labels the MAC
 layer and PHY layer, with radio

Radio Overview

- A radio wave is an electromagnetic wave propagated by an antenna
- Radio waves are modulated: sound signal is superimposed on stronger radio wave that carries the data (" carrier signal")
- 802.11b and 802.11g use 2.4 GHz carrier and 802.11a uses 5 GHz frequency carrier.
 - Both actually use small % of frequencies on either side of the norm => giving them multiple channels on which to transmit.
 - If two transmitters collide, they hop to another channel and try again

CS 152 L21 Buses & Networks (31)

Radio Overview

- Bit error rate (BER) of wireless link is determined by received signal power, noise due to interference caused by the receiver hardware and interference from other sources
 - Noise typically proportional to radio frequency BW

Wireless Network Challenges

- 1) Devices are mobile or wiring is inconvenient, which means the wireless network must rearrange itself dynamically
- 2) Wireless signals are not protected => subject to mutual interference, especially as devices move, and to eavesdropping
- 3) Power: both because mobile devices tend to be battery powered and because antennas radiate power to communicate and little of it reaches the receiver
 - Raw bit error rates typically 1,000 to
 1,000,000 times higher than copper wire

CS 152 L21 Buses & Networks (33)

2 primary architectures for wireless networks

- Base stations connected by wire for longer-distance communication, and mobile units communicate only with a single local base station (802.11)
- Peer-to-peer architectures allow mobile units to communicate with each other, and messages hop from one unit to the next until delivered to the desired unit
- peer-to-peer more reconfigurable, but base stations more reliable since only 1
 hop between the device and the station

Peer Instruction

- Ethernet packet size is 64 to 1538 Bytes
- If you could redesign packets just for wireless, how would they look
- 1) Due to the higher Bit Error Rate of wireless, you would like smaller packets
- 2) Ethernet was inspired by Aloha net which was a wireless network, so that packet sizes are fine as is
- 3) To get greater bandwidth when using air as the medium, you'd like larger packets

Smaller packets yet Ethernet?

- 802.11 allows MAC layer to fragment large messages into several smaller messages
- The MAC layer of the receiving device then reassembles these smaller messages into the original full Ethernet message

Privacy yet Radio?

- 802.11 offers "Wired Equivalent Privacy"
- It uses a pseudo-random number generator initialized by a shared secret key.
- Operators initialize access points and end-user stations with the secret key.
- A pseudo-random sequence of bits equal to the largest packet is combined with the real packet to encode the packet transmitted in air.

802.11 vs. Cellulary Telephony

- Which is cheaper?
- Why?
 - Distance?
 - Universal access?
 - Voice vs. Data?
 - Automobile?
 - Internet vs. Telephone infrastructure?

Peer Instruction

- Which of the following are true?
- 1) Protocol stacks are an example of using abstraction to hide complexity.
- 2) TCP/IP is used for WANs, but LANs use a protocol stack appropriate for the lower latency and higher bandwidths.
- 3) Although the 802.11 LAN standard is wireless like the cell phone, there is little commonality between the two technologies.

Summary

- Buses are an important technique for building large-scale systems
 - Their speed is critically dependent on factors such as length, number of devices, etc.
 - Critically limited by capacitance
- Direct Memory Access (dma) allows fast, burst transfer into processor's memory:
 - Processor's memory acts like a slave
 - Probably requires some form of cache-coherence so that DMA'ed memory can be invalidated from cache.
- Networks and switches popular for LAN, WAN
- Networks and switches starting to replace buses on desktop, even inside chips

