CS152 — Exam 2 Review

2003-11-18

Jack and Kurt
www-inst.eecs.berkeley.edu/~cs152/

Q CS 152 Review Jack Kang and Kurt Meinz

Question 1a:

Problem 1a: Assume that we have a 32-bit processor (with 32-bit words) and that this processor
1s byte-addressed (1.e. addresses specify bytes). Suppose that it has a 512-byte cache that 1s two-
way set-associative, has 4-word cache lines, and uses LRU replacement. Split the 32-bit address

1 LT

into “tag”, “index”. and “cache-line offset” pieces. Which address bits comprise each piece?
e Tag:
* Index:
» Block Offset:

CS 152 Review Jack Kang and Kurt Meinz

Question 1b:

Problem 1a: Assume that we have a 32-bit processor (with 32-bit words) and that this processor
1s byte-addressed (1.e. addresses specify bytes). Suppose that it has a 512-byte cache that 1s two-
way set-associative, has 4-word cache lines, and uses LRU replacement. Split the 32-bit address
into “tag”, “index”. and “cache-line offset” pieces. Which address bits comprise each piece?

e Tag: 24 bits total: 31-8
e |ndex: 4 bits total: 7-4
 Block Offset: 4 bits total: 3-0

Q CS 152 Review Jack Kang and Kurt Meinz

Question 1b:

Problem 1a: Assume that we have a 32-bit processor (with 32-bit words) and that this processor
1s byte-addressed (1.e. addresses specify bytes). Suppose that it has a 512-byte cache that 1s two-
way set-associative, has 4-word cache lines, and uses LRU replacement. Split the 32-bit address

1 LT

into “tag”, “index”. and “cache-line offset” pieces. Which address bits comprise each piece?

e Tag: 24 bits total: 31-8
e |ndex: 4 bits total: 7-4
 Block Offset: 4 bits total: 3-0

Problem 1b: How many sets does this cache have? Explain.

CS 152 Review Jack Kang and Kurt Meinz

Question 1b:

Problem 1a: Assume that we have a 32-bit processor (with 32-bit words) and that this processor
1s byte-addressed (1.e. addresses specify bytes). Suppose that it has a 512-byte cache that 1s two-
way set-associative, has 4-word cache lines, and uses LRU replacement. Split the 32-bit address
into “tag”, “index”. and “cache-line offset” pieces. Which address bits comprise each piece?

e Tag: 24 bits total: 31-8
e |ndex: 4 bits total: 7-4
 Block Offset: 4 bits total: 3-0

Problem 1b: How many sets does this cache have? Explain.

4 bits in the index field =»
274 possible values =
16 sets

Q CS 152 Review Jack Kang and Kurt Meinz

Question 1c:

Problem 1c: Draw a block diagram for this cache. Show a 32-bit address coming into the
diagram and a 32-bit data result and “Hit” signal coming out. Include. all of the comparators in
the system and any muxes as well. Include the data storage memories (indexed by the “Index™).
the tag matching logic. and any muxes. You can indicate RAM with a simple block. but make
sure to label address widths and data widths. Make sure to label the function of various blocks
and the width of any buses.

CS 152 Review Jack Kang and Kurt Meinz

Question 1c:

o 2
S TAG<24bits> DATA<128bits> DATA<128bits> TAG<=24bits> >
0 0
1 1
2 2
— 3 3
i
17y
S
=
< 13 13
14 14
15] 15
o)
5% 2§£ 128 128
oW
g 24/
e 7
0 MUX 1 SEL
(2-1) -
~ & 1 28/ /
o
= ‘gg" MUX
g)
kS 32
< A
Y

CS 152 Review

Jack Kang and Kurt Meinz

Question 1d:

Problem 1d: Below is a series of memory read references set to the cache from part (a). Assume
that the cache is mnitially empty and classify each memory references as a hit or a miss. Identify
each miss as either compulsory, conflict, or capacity. One example 1s shown. Hint: start by
splitting the address into components. Show vour work.

CS 152 Review Jack Kang and Kurt Meinz

Question 1d:

Problem 1d: Below is a series of memory read references set to the cache from part (a). Assume
that the cache is mnitially empty and classify each memory references as a hit or a miss. Identify
each miss as either compulsory, conflict, or capacity. One example 1s shown. Hint: start by
splitting the address into components. Show vour work.

CS 152 Review

Address Hit/Miss? Miss Type? Address Hit/Miss? Miss Tvpe?
0x300 Miss Compulsory 0x3B2 Miss Compulsory
0xX1BC Miss Compulsory 0x10C Hit —
0x206 Miss Compulsory 0xX205 Miss Conflict
0x109 Miss Compulsory 0x301 Miss Conflict
0x308 Miss Conflict 0X3AE Miss Compulsory
0x1Aal Miss Compulsory 0xX1A8 Miss Conflict
0x1B1 Hit — 0xX3Al Hit —
0X2AE Miss Compulsory 0x1BA Hit _

Jack Kang and Kurt Meinz

Question le:

Problem 1d: Below is a series of memory read references set to the cache from part (a). Assume
that the cache is mnitially empty and classify each memory references as a hit or a miss. Identify
each miss as either compulsory, conflict, or capacity. One example 1s shown. Hint: start by
splitting the address into components. Show vour work.

Address Hit/Miss? Miss Type? Address Hit/Miss? Miss Tvpe?
0x300 Miss Compulsory 0x3B2 Miss Compulsory
0xX1BC Miss Compulsory 0x10C Hit —
0x206 Miss Compulsory 0xX205 Miss Conflict
0x109 Miss Compulsory 0x301 Miss Conflict
0x308 Miss Conflict 0X3AE Miss Compulsory
0x1Aal Miss Compulsory 0xX1A8 Miss Conflict
0x1B1 Hit — 0xX3Al Hit —
0X2AE Miss Compulsory 0x1BA Hit _

Problem le: Calculate the miss rate and hit rate.

CS 152 Review

Jack Kang and Kurt Meinz

Question le:

Problem 1d: Below is a series of memory read references set to the cache from part (a). Assume
that the cache is mnitially empty and classify each memory references as a hit or a miss. Identify
each miss as either compulsory, conflict, or capacity. One example 1s shown. Hint: start by
splitting the address into components. Show vour work.

Address Hit/Miss? Miss Type? Address Hit/Miss? Miss Tvpe?
0x300 Miss Compulsory 0x3B2 Miss Compulsory
0xX1BC Miss Compulsory 0x10C Hit —
0x206 Miss Compulsory 0xX205 Miss Conflict
0x109 Miss Compulsory 0x301 Miss Conflict
0x308 Miss Conflict 0X3AE Miss Compulsory
0x1Aal Miss Compulsory 0xX1A8 Miss Conflict
0x1B1 Hit — 0xX3Al Hit —
0X2AE Miss Compulsory 0x1BA Hit _

Problem 1le: Calculate the miss rate and hit rate.
4
Hit Rate = — =10.25
16
-

12
Miss Rate =1 — Hit Rate = E =0.75

CS 152 Review Jack Kang and Kurt Meinz

Question 1f:

Component Hit Time Miss Rate Block Size
First-Level 4% Data
Cache I cycle 1% Instructions 64 bytes
Second-Level 20 cycles + "o R
Cache 1 cycle/64bits 2% 2l
100ns+ o .
DRAM 25ns/8 bytes 1% 16K bytes
DISK . 0% 16K bytes
20ns/byte -’

AMATDisk = ?

CS 152 Review

Problem 1f: You have a 500 MHz processor with 2-levels of cache, 1 level of DRAM. and a

DISK for virtual memory. Assume that it has a Harvard architecture (separate instruction and
data cache at level 1). Assume that the memory system has the following parameters:

Finally, assume that there is a TLB that misses 0.1% of the time on data (doesn’t miss on

instructions) and which has a fill penalty of 40 cycles. What 1s the average memory access time
(AMAT) for Instructions? For Data (assume all reads)?

Jack Kang and Kurt Meinz

data cache at level 1). Assume that the memory system has the following parameters:

Question 1f:

Problem 1f: You have a 500 MHz processor with 2-levels of cache, 1 level of DRAM. and a
DISK for virtual memory. Assume that it has a Harvard architecture (separate instruction and

Component Hit Time Miss Rate Block Size
First-Level 4% Data
Cache I cycle 1% Instructions 64 bytes
Second-Level 20 cycles + "o R
Cache 1 cycle/64bits 2% 2l
100ns+ o .
DRAM 25ns/8 bytes 1% 16K bytes
DISK . 0% 16K bytes
20ns/byte -’

Finally, assume that there is a TLB that misses 0.1% of the time on data (doesn’t miss on

instructions) and which has a fill penalty of 40 cycles. What 1s the average memory access time
(AMAT) for Instructions? For Data (assume all reads)?

AMATDisk

CS 152 Review

~~ S5E7ns
S5E7ns/ (2ns/clock) =» 2.5E7 clocks

+

AccessTime + AMATMissPenalty + TransferRate*TransferSize
50E6ns

0 + (20ns/byte * 16Kbytes)

Jack Kang and Kurt Meinz

data cache at level 1). Assume that the memory system has the following parameters:

Question 1f:

Problem 1f: You have a 500 MHz processor with 2-levels of cache, 1 level of DRAM. and a
DISK for virtual memory. Assume that it has a Harvard architecture (separate instruction and

Component Hit Time Miss Rate Block Size
First-Level 4% Data
Cache I cycle 1% Instructions 64 bytes
Second-Level 20 cycles + "o R
Cache 1 cycle/64bits 2% 2l
100ns+ o .
DRAM 25ns/8 bytes 1% 16K bytes
DISK D0ms = 0% 16K bytes
20ns/byte -’

Finally, assume that there is a TLB that misses 0.1% of the time on data (doesn’t miss on

instructions) and which has a fill penalty of 40 cycles. What 1s the average memory access time
(AMAT) for Instructions? For Data (assume all reads)?

AMATDRAM

1

CS 152 Review

AccessTime + AMATMiss
+ 5E7ns*0.01

00ns
~~ 5E5ns

5E5ns/ (2ns/clock) = 2.5E5 clocks

+ TransferRate*TransferSize
+ (25ns/8bytes * 128bytes) =

Jack Kang and Kurt Meinz

Question 1f:

Problem 1f: You have a 500 MHz processor with 2-levels of cache, 1 level of DRAM. and a
DISK for virtual memory. Assume that it has a Harvard architecture (separate instruction and
data cache at level 1). Assume that the memory system has the following parameters:

Component Hit Time Miss Rate Block Size
First-Level 4% Data
Cache I cycle 1% Instructions 64 bytes
Second-Level 20 cycles + "o R
Cache 1 cycle/64bits 2% 2l
100ns+ o .
DRAM 25ns/8 bytes 1% 16K bytes
DISK D0ms = 0% 16K bytes
20ns/byte -’

Finally, assume that there is a TLB that misses 0.1% of the time on data (doesn’t miss on
instructions) and which has a fill penalty of 40 cycles. What 1s the average memory access time

(AMAT) for Instructions? For Data (assume all reads)?

AMATL2 = AccessTime + AMATMiss + TransferRate*TransferSize
(20c*2ns/c) + 5E5ns*0.02 + (2ns/8bytes * 64bytes) =

~~1E4 ns
= 1E4ns/ (2ns/clock) = 5E3 clocks

CS 152 Review Jack Kang and Kurt Meinz

Question 1f:

Component Hit Time Miss Rate Block Size
First-Level 4% Data
Cache I cycle 1% Instructions 64 bytes
Second-Level 20 cycles + "o R
Cache 1 cycle/64bits 2% 2l
100ns+ o .
DRAM 25ns/8 bytes 1% 16K bytes
DISK . 0% 16K bytes
20ns/byte -’

AMATL1Inst = AccessTime + AMATMiss

= (1c*2ns/c) + (5E3ns * 0.01) +

CS 152 Review

~~1E2 ns

1E2ns/ (2ns/clock) = 50 clocks (!!)

0

Problem 1f: You have a 500 MHz processor with 2-levels of cache, 1 level of DRAM. and a

DISK for virtual memory. Assume that it has a Harvard architecture (separate instruction and
data cache at level 1). Assume that the memory system has the following parameters:

Finally, assume that there is a TLB that misses 0.1% of the time on data (doesn’t miss on

instructions) and which has a fill penalty of 40 cycles. What 1s the average memory access time
(AMAT) for Instructions? For Data (assume all reads)?

+ TransferRate*TransferSize

Jack Kang and Kurt Meinz

Question 1f:

Problem 1f: You have a 500 MHz processor with 2-levels of cache, 1 level of DRAM. and a
DISK for virtual memory. Assume that it has a Harvard architecture (separate instruction and
data cache at level 1). Assume that the memory system has the following parameters:

Component Hit Time Miss Rate Block Size
First-Level 4% Data
Cache I cycle 1% Instructions 64 bytes
Second-Level 20 cycles + "o R
Cache 1 cycle/64bits 2% 2l
100ns+ o .
DRAM 25ns/8 bytes 1% 16K bytes
DISK D0ms = 0% 16K bytes
20ns/byte -’

Finally, assume that there is a TLB that misses 0.1% of the time on data (doesn’t miss on
instructions) and which has a fill penalty of 40 cycles. What 1s the average memory access time
(AMAT) for Instructions? For Data (assume all reads)?

AMATL1Data = AccessTime + AMATMiss + TransferRate*TransferSize
= (1c*2ns/c) + (5E3ns * 0.04) + 0

~~4E2 ns

= 4E2ns/ (2ns/clock) = 200 clocks (!!)

CS 152 Review Jack Kang and Kurt Meinz

Question 1g:

Problem 1g: Suppose that we measure the following instruction mix for benchmark “X™:

Loads: 20%0, Stores: 15%o, Integer: 30%o, Floating-Point: 15% Branches: 20%o
Assume that we have a single-1ssue processor with a minimum CPI of 1.0. Assume that we have
a branch predictor that is correct 95% of the time. and that an incorrect prediction costs 3 cycles.
Finally, assume that data hazards cause an average penalty of 0.7 cycles for floating point
operations. Integer operations run at maximum throughput. What i1s the average CPI of
Benchmark X, including memory misses (from part g)?

CS 152 Review Jack Kang and Kurt Meinz

Question 1g:

Problem 1g: Suppose that we measure the following instruction mix for benchmark “X™:

Loads: 20%0, Stores: 15%o, Integer: 30%o, Floating-Point: 15% Branches: 20%o
Assume that we have a single-1ssue processor with a minimum CPI of 1.0. Assume that we have
a branch predictor that is correct 95% of the time. and that an incorrect prediction costs 3 cycles.
Finally, assume that data hazards cause an average penalty of 0.7 cycles for floating point
operations. Integer operations run at maximum throughput. What i1s the average CPI of
Benchmark X, including memory misses (from part g)?

CPI = MIinCPI + X [CPI of exceptional events]

MinCPIl + CPIHazardStalls + CPIMemoryStalls

CS 152 Review Jack Kang and Kurt Meinz

Question 1g:

Problem 1g: Suppose that we measure the following instruction mix for benchmark “X™:

Loads: 20%0, Stores: 15%o, Integer: 30%o, Floating-Point: 15% Branches: 20%o
Assume that we have a single-1ssue processor with a minimum CPI of 1.0. Assume that we have
a branch predictor that is correct 95% of the time. and that an incorrect prediction costs 3 cycles.
Finally, assume that data hazards cause an average penalty of 0.7 cycles for floating point
operations. Integer operations run at maximum throughput. What i1s the average CPI of
Benchmark X, including memory misses (from part g)?

CPI = MIinCPI + X [CPI of exceptional events]

MinCPIl + CPIHazardStalls + CPIMemoryStalls

]
Y

+ X(InstTypeFreq*CPIl) + Z(MemAccessFreq*AccessAMAT)

CS 152 Review Jack Kang and Kurt Meinz

Question 1g:

Problem 1g: Suppose that we measure the following instruction mix for benchmark “X™:

Loads: 20%0, Stores: 15%o, Integer: 30%o, Floating-Point: 15% Branches: 20%o
Assume that we have a single-1ssue processor with a minimum CPI of 1.0. Assume that we have
a branch predictor that is correct 95% of the time. and that an incorrect prediction costs 3 cycles.
Finally, assume that data hazards cause an average penalty of 0.7 cycles for floating point
operations. Integer operations run at maximum throughput. What i1s the average CPI of
Benchmark X. including memory misses (from part g)?

CPI = MIinCPI + X [CPI of exceptional events]

MinCPI + CPIHazardStalls + CPIMemoryStalls

1 + X(InstTypeFreq*CPI) + £(MemAccessFreq*AccessAMAT)

1+ [(FPFreq*FPCPI)
+ (BBranchFreq*BBCPI)]
+ [(MemInstFreq * AMATL1Inst/(2ns/clock))
+ (DatalnstFreq *AMATL1Datal/(2ns/clock))]

1+ 0.15%0.7 + 0.2*0.05*0.3 + 1*100/2 + 0.35*400/2 => 124CPI (!!)

CS 152 Review Jack Kang and Kurt Meinz

Question 2a:

2a) Explain why we would be unable to pick a single optimum number of branch delay slots for
the above processor.

CS 152 Review Jack Kang and Kurt Meinz

Question 2a

2a) Explain why we would be unable to pick a single optimum number of branch delay slots for
the above processor.

Branch delay slots affect correctness (they represent functional behavior — things always
executed when a branch is executed), we have to pick a single number. The result wouldn't
be optimal under all circumstances, since we issue 0, [, or 2 instructions per cycle afier the
branch.

CS 152 Review Jack Kang and Kurt Meinz

Question 2b

2a) Explain why we would be unable to pick a single optimum number of branch delay slots for
the above processor.

CS 152 Review Jack Kang and Kurt Meinz

Question 2b

2a) Explain why we would be unable to pick a single optimum number of branch delay slots for
the above processor.

This depends on whether or not the two memory stages are separable. 4 WAR hazard would
occur if it were possible for a later store to change the value of an early read. If stores go to
memory early but loads take two cveles, this might be a problem. The way to fix this (if it
happens) is to make sure that stores take two cycles just like loads. Note that the answer to
this question is likely “"NO ™ unless you do something weird with your memory system.

CS 152 Review Jack Kang and Kurt Meinz

Question 2¢

2¢) Below 1s a start at a simple diagram for the pipelines of this processor.

1) Finish the diagram. Stages are boxes with letters inside: Use “F" for a fetch stage, D™ for a
decode stage, EX; through EX4 for the execution stages of each of the pipelines (including
memory accesses), and W for a writeback stage. Clearly label which is the even pipeline.
Include arrows for forward information flow if this is not obvious.

2) Next, deseribe what is being computed in each EX stage (including partial results).

3) Show all forwarding paths (as arrows). Your pipeline should never stall unless a value is not
ready. Label each bypass arrow with the types of instructions that will forward their results
along that path (i.e. use "M” for multf, “D” for divf, “A” for addf, “I” for integer operations,
and “Ld" for load results). [Hint: think carefully about inputs to store instructions!]

CS 152 Review Jack Kang and Kurt Meinz

74

Question 2c

CS 152 Review

.M. L0 D
[AL ML Le
E_'|5{3 X

EX;
EX, EX,
MEM, | MEM;
A ML L [
7 |
Al mMIdd D §
EX, EX;
EX, | | EX,
MEM, | MEM,
[A M. Ld
[AN, Ld. D

EVEN

W

ODD

Jack Kang and Kurt Meinz

Question 2¢

EX Stages: EX;: Integer ops, Branches, Memory address computation, First stage of A, M, D

EX,: First stage of load/store, Finish A, Second stage of M, D

EXs: Final stage of load/store, Finish M. Third stage of' D

EX4: Final stage of D
Notes: The primary forwarding is from the end of EX stages back to the end of decode stage. Store
Jorwarding is shown between the two pipes and only involves special cases in which an operation finishes
and needs to be forwarded into the beginning of EX>. Note in particular the very special case of integer
SJorwarding from an integer op in even pipeline to store in odd. With this arc, you can actually issue a
integer op and a store of the result in the same cycle.

CS 152 Review Jack Kang and Kurt Meinz

Question 2d

2d)Note that we assume that a load 15 not completed until the end of EX;5 and that a store must
have its value by the begimning of EX;. Consider the following common sequence for a
Memory copy:

loop: 1d rl, 0(r2)
st rl, 0(xr3)
add rZ, rZ, #4
subli rd4, rd, #1
add r3, ri, #4d
bne r4, r0, loop
nop

Why can’t the load and store to be digpatched in the same cycle? What 15 the minimum
number of instructions that must be placed between them to avoid stalling?

CS 152 Review Jack Kang and Kurt Meinz

Question 2d

2d) Note that we assume that a load is not completed until the end of EX5 and that a store must
have 1ts value by the beginning of EX;. Consider the following common sequence for a

memaory Copy.

loop: 14 rl,
st rl,
add rzZ,
gubi r4,
add 3,
bne r4,
nop

Qir2)
Q(r3)
rz2, #4
rd, #1
r3i, #4
r0D, loop

Why can’t the load and store to be dispatched in the same cycle? What 1s the minimum
number of instructions that must be placed between them to avoid stalling?

They cannot be dispatched in the same cycle because of the dependency through vl. In this pipeline,
the store must execute 2 cycles later than the load (because loads take 2 cycles). In the best case
(load in the odd pipeline, store in the even pipeline), there must be 1 bubble cycle or 2 instructions.

No, answer: 2 instructions

The easiest way to understand this is to imagine that the load is in the EX, stage of the odd pipeline
while the store is in the EX; stage of the even pipeline. Look at the answer for the previous problem.
There is a special store arc to handle this circumstances. The load is 2 cycles ahead of the store. We
need to fill instructions in the two different EX; stages.

CS 152 Review

Jack Kang and Kurt Meinz

Question 2e

2¢) What can you change about the pipeline to reduce your answer to (2d)?

not allowed to change the latencies of any instructions.

Assume that YOuU are

CS 152 Review Jack Kang and Kurt Meinz

Question 2e

2¢) What can you change about the pipeline to reduce your answer to (2d)? Assume that you are
not allowed to change the latencies of any instructions.

By shifting the memory stages in the even pipeline forward 1 cvcle, we can get () instructions. What

this means is that the two mem stages for the even pipeline are in EX; and EX,. Then, if the load is in
the odd pipeline and the store is in the even pipeline (next cycle), we have no stalls.

CS 152 Review Jack Kang and Kurt Meinz

Question 2g

2o) |Extra Credit: Spts| Briefly describe the logie that would be required in the decode stage of
this pipeline. In five (5) sentences or less {and possibly a small figure), describe a
mechanism that would permit the decode stage to decide which of two mstructions presented
to 1t could be dispatched.

CS 152 Review Jack Kang and Kurt Meinz

Question 29

2oy |Extra Credit: Spts| Briefly describe the logic that would be required in the decode stage of
this pipeline. In five (5) sentences or less (and possibly a small figure), describe a
mechanism that would permit the decode stage to decide which of two instructions presented
to 1t could be dispatched.

-We have to check to see if the 2" instruction depends on the first one.

-We have to check the operands of the two instructions against any
instructions still in the pipeline, and see if it can issue. This step is
slightly complex because different instructions in the pipeline finish at
different times.

CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Extra Credit (Problem 3X):

Assume that yvou have a Tomasulo architecture with functional units of the same execution
latency (number of cycles) as our deeply pipelined processor (be careful to adjust use latencies
to get number of execution cvcles!). Assume that 1t issues one instruction per cycle and has an
unpipelined divider with a small number of reservation stations. Suppose the other functional
units are duplicated with many reservation stations and that there are many CDBs. . What 1s the
minimum number of divide reservation stations to achieve omne instruction per cycle with the
optimized code of (3b)? Show vour work. [hint: assume that the maximumn issue rate is
sustained and look at the scheduling of a single iteration]

Load: 3 cycles, Add: 2 cycles, Multiply: 4 cycles, Divide: 9 cycles (careful here!)

loop: 1df SF20, 0(&rlo)
1df SF10, 8(Srio)
multf S$F6, SF20, SF1
addf &F12, &SF6, SF2
addi Ssrio, srio, #16
divf SF13, SF12, SF10
addi &§rz20, s5r20, #8
subi Sri1, sri, #1

bne sSrl, Szero, loop‘___

stf -8(%r20), &F13

CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Load: 3 cycles, Add: 2 cycles, Multiply: 4 cycles, Divide: 9 cycles (careful here!)
loop: 1df SF20, 0(&rlo)
1df SF10, 8(srio)
multf $F6, S$F20, &F1
addf &F12, &F6, SF2
addi Ssrio, srio, #16
divf &F13, SF12, S$F10
addi &§rz20, s5r20, #8
subi Sri1, sri, #1

bne sSrl, Szero, loop‘____

stf -8(%r20), &F13

Keys to Problem:
1) # of station entries needed = # of div instructions in flight at same time

2)

CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Load: 3 cycles, Add: 2 cycles, Multiply: 4 cycles, Divide: 9 cycles (careful here!)
loop: 1df SF20, 0(srio)
1df SF10, 8(srio)
multf $F6, S$F20, &F1
addf &F12, &F6, SF2
addi Ssrio, srio, #16
divf &F13, SF12, S$F10
addi &§rz20, s5r20, #8
subi Sri1, sri, #1

bne sSrl, Szero, loop‘____

stf -8(%r20), &F13

Keys to Problem:
1) # of station entries needed = # of div instructions in flight at same time

2) We can trace through a few iterations of the loop to see how many divs
are active at any given time

CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Load: 3 cycles, Add: 2 cycles, Multiply: 4 cycles, Divide: 9 cycles (careful here!)
loop: 1df SF20, 0(srio)
1df SF10, 8(srio)
multf $F6, S$F20, &F1
addf &F12, &F6, SF2
addi Ssrio, srio, #16
divf &F13, SF12, S$F10
addi &§rz20, s5r20, #8
subi Sri1, sri, #1

bne sSrl, Szero, loop‘____

stf -8(%r20), &F13

Keys to Problem:
1) # of station entries needed = # of div instructions in flight at same time

2) We can trace through a few iterations of the loop to see how many divs
are active at any given time

3) We need a table to trace the tomasulo!

CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 1: First Few instructions
N rd rs rt I El | EF | WB N rd rs rt I E1l | EF | WB
Idf F20 | R10 1

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 2: First Few instructions

N rd rs rt I El | EF | WB N rd rs rt I E1l | EF | WB
|df F20 | R10 1 |2 4*

Ldf | F10 | R10 2

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 3: First Few instructions

N rd rs rt I El | EF | WB N rd rs rt I E1l | EF | WB
|df R10 1 4*

Ldf F10 | R10 2 5*

multf | F6 F1 3

Q CS 152 Review

Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 4: First Few instructions

N rd rs rt I E1l |[EF {WB ||N rd rs rt I El |EF | WB
|df R10 1 4

Ldf | F10 | R10 2 5*

multf | F6 F1 |3

addf |F12 |F6 |F2 |4

Q CS 152 Review

Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 5: First Few instructions

N rd rs rt I E1l |[EF {WB ||N rd rs rt I El |EF | WB
|df F20 | R10 1 5

Ldf | F10 | R10 2 5

multf | F6 | F20 |F1 |3

addf |F12 |F6 |F2 |4

addi | R10 | R10 5

Q CS 152 Review

Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 6: First Few instructions

N rd rs rt I El |[EF {WB ||N rd rs rt I El |EF | WB
|df F20 | R10 1 5

Ldf | F10 | R10 2 5

multf |F6 |F20 |F1 (3 |6 9*

addf |F12 |F6 |F2 |4

addi | R10 | R10 5 |6 6

divf |F13 |F12 | F10 | 6

Q CS 152 Review

Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 7: First->Second Divf

N rd rs rt I E1l |[EF {WB ||N rd rs rt I El |EF | WB
|df F20 | R10 1

Ldf | F10 | R10 2 5

multf | F6 | F20 |F1 |3 o*

addf |F12 |F6 |F2 |4

addi | R10 | R10 5 |6 6 7

divf |F13 |F12 |F10 |6

addi | R20 | R20 7

Q CS 152 Review

Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 8: First->Second Divf

N rd rs rt I E1l |[EF {WB ||N rd rs rt I El |EF | WB
|df F20 | R10 1

Ldf | F10 | R10 2 5

multf | F6 | F20 |F1 |3 o*

addf |F12 |F6 |F2 |4

addi | R10 | R10 5 |6 6 7

divf |F13 |F12 |F10 |6

addi | R20 | R20 7 |8 8

Subi | R1 | R1 8

Q CS 152 Review Jack Kang and Kurt Meinz

Tomasulo Trace:

Question 3:

CC 9: First->Second Divf

N rd rs rt I E1l |[EF {WB ||N rd rs rt I El |EF | WB
|df F20 | R10 1

Ldf | F10 | R10 2

multf |F6 |F20 |F1 |3

addf |F12 |F6 |F2 |4

addi | R10 | R10 5 |6 6 7

divf |F13 |F12 |F10 |6

addi | R20 | R20 7 |8 8 9

Subi R1 8 |9 9

bne | -- 9

Q CS 152 Review

Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 10: First->Second Divf
N rd rs rt I E1l |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1
|df f10 | rl0 2
multf | f6 f20 [f1 |3 10
addf | f12 | f6 f2 |4
addi | r10 |rl10 5 6 6 7
divf | f13 |[fl12 [f10 | 6
addi | r20 |r20 7 9
subi | r1 rl 8 10
bne | -- r1 9 - |- --
stf -- f13 | r20 (10

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 11: First->Second Divf
N rd rs rt I El |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1
|df f10 | rl0 2
multf | f6 f20 [f1 |3 10
addf | f12 | f6 f2 (4 11 | 12*
addi | r10 |rl10 5 6 6 7
divf | f13 |[fl2 [f10 |6
addi | r20 |r20 7 9
subi |rl rl 8 10
bne | -- rl 9 - |- --
stf -- f13 | r20 | 10
Idf | f20 | r110 11

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 12: First->Second Divf
N rd rs rt I El |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1

|df f10 | rl0 2

multf | f6 f20 [f1 |3 10

addf | f12 | f6 f2 (4 11 | 12

addi | r10 |rl10 5 6 6 7

divf | f13 |[fl2 [f10 |6

addi | r20 |r20 7 9

subi |rl rl 8 10

bne | -- rl 9 - |- --

stf -- f13 | r20 | 10

|df f20 | rl0 11 |12 | 14*

idf | f10 | r110 12

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 13: First->Second Divf
N rd rs rt I El |EF |[WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1
|df f10 | rl0 2
multf | f6 f20 [f1 |3 10
addf |12 | f6 f2 (4 11 (12 |13
addi | r10 |rl0 5 6 6 7
divf | f13 |[f12 [f10 | 6
addi | r20 |r20 7 9
subi |rl rl 8 10
bne | -- rl 9 - |- --
stf -- f13 | r20 | 10
|df f20 | r10 11 |12 | 14*
|df f10 | rl0 12 |13 |15
multf | f6 f20 (f1 |13

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 14: First->Second Divf
N rd rs rt I El |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1 addf | f12 f2 14
|df f10 | rl0 2

multf | f6 f20 [f1 |3 10

addf | f12 | f6 f2 (4 11 (12 |13

addi | r10 |rl0 5 6 6 7

divf | f13 |[fl12 [f10 |6 14 | 22*

addi | r20 |r20 7 8 9

subi |rl rl 8 9 10

bne | -- rl 9 - |- --

stf -- f13 | r20 | 10

|df f20 | rl0 11 |12 |14

|df f10 | rl0 12 | 13 | 15*

multf f20 | f1 |13

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 15: First->Second Divf
N rd rs rt I El |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1 addf | f12 f2 14
|df f10 | rl0 2 addi | r10 | r10 15
multf | f6 f20 [f1 |3 10
addf | f12 | f6 f2 (4 11 (12 |13
addi | r10 |rl0 5 6 6 7
divf | f13 |[fl12 [f10 |6 14 | 22*
addi | r20 |r20 7 8 9
subi |rl rl 8 9 10
bne | -- rl 9 - |- --
stf -- f13 | r20 | 10
|df f20 | rl10 11 |12 (14 |15
|df f10 | rl0 12 |13 |15
multf f20 | f1 |13

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 16: First->Second Divf

N rd rs rt I El |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1 addf | f12 f2 14

|df f10 | rl10 2 addi | r10 |rl0 15|16 |16
multf | f6 f20 [f1 |3 10 divf |13 |f12 |10 |16

addf | f12 | f6 f2 (4 11 (12 |13

addi | r10 |rl0 5 6 6 7

divf | f13 |[fl12 [f10 |6 14 | 22*

addi | r20 |r20 7 8 9

subi |rl rl 8 9 10

bne | -- rl 9 - |- --

stf -- f13 | r20 | 10

|df f20 | rl0 11 |12 (14 |15

|df f10 | rl0 12 |13 (15 |16

multf f20 (f1 |13 |16 | 19*

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 17: First->Second->Third Divf

N rd rs rt I El |EF [WB [|N rd rs rt I E1l |EF | WB
|df f20 | rl0 1 addf | f12 f2 14

|df f10 | rl10 2 addi | r10 |rl0 15116 |16 |17
multf | f6 f20 [f1 |3 10 divf |f13 |f12 |f10 | 16

addf | f12 | f6 f2 (4 11 (12 |13 addi | r20 | r20 17

addi | r10 |rl0 5 6 6 7

divf | f13 |[fl12 [f10 |6 14 | 22

addi | r20 |r20 7 9

subi |rl rl 8 10

bne | -- rl 9 - |- --

stf -- f13 | r20 | 10

|df f20 | rl0 11 |12 (14 |15

|df f10 | rl0 12 |13 |15 |16

multf f20 (f1 |13 |16 | 19*

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 18: First->Second- >Third Divf

N rd rs rt I El |EF [WB [|N rd rs rt I E1l |EF | WB
|df f20 | rl0 1 addf | f12 f2 14

|df f10 | rl10 2 addi | r10 |rl0 15|16 |16 |17
multf | f6 f20 [f1 |3 10 divf |f13 |f12 |fl10 | 16

addf | f12 | f6 f2 (4 11 (12 |13 addi | r20 |r20 17|18 |18
addi | r10 |rl0 5 6 6 7 subi | r1 r1 18

divf | f13 |[fl12 [f10 |6 14 | 22

addi | r20 |r20 7 9

subi |rl rl 8 10

bne | -- rl 9 - |- --

stf -- f13 | r20 | 10

|df f20 | rl0 11 |12 (14 |15

|df f10 | rl0 12 |13 |15 |16

multf f20 (f1 |13 |16 | 19*

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 19: First->Second- >Third Divf

N rd rs rt I El |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1 addf | f12 f2 14

|df f10 | rl10 2 addi | r10 |rl0 15|16 |16 |17
multf | f6 f20 [f1 |3 10 divf |f13 |f12 |f10 | 16

addf | f12 | f6 f2 (4 11 (12 |13 addi | r20 |r20 17118 (18 |19
addi | r10 |rl0 5 6 6 7 subi rl 18119 |19
divf |f13 |[f12 |fl0 |6 14 | 22 bne | -- 19 |- | =~ |-
addi | r20 |r20 7 9

subi |rl rl 8 10

bne | -- rl 9 - |- --

stf -- f13 | r20 | 10

|df f20 | rl0 11 |12 (14 |15

|df f10 | rl0 12 |13 |15 |16

multf f20 |f1 |13 |16 |19

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 20: First->Second- >Third Divf

N rd rs rt I El |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1 addf | f12 |6 f2 14

|df f10 | rl10 2 addi | r10 |rl0 15|16 |16 |17
multf | f6 f20 [f1 |3 10 divf f12 | f10 |16

addf | f12 | f6 f2 (4 11 (12 |13 addi | r20 |r20 17118 |18 |19
addi | r10 |rl0 5 6 6 7 subi | r1 rl 18119 (19 |20
divf |f13 |[f12 |fl0 |6 14 | 22 bne | -- r1 19 | -- -- --
addi | r20 |r20 7 9 stf -- r20 | 20

subi |rl rl 8 10

bne | -- rl 9 - |- --

stf -- f13 | r20 | 10

|df f20 | rl0 11 |12 (14 |15

|df f10 | rl0 12 |13 |15 |16

multf | f6 f20 |f1 |13 [16 |19 |20

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 21: First->Second- >Third Divf

N rd rs rt I El |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1 addf | f12 | f6 f2 14|21 |22

|df f10 | rl10 2 addi | r10 |rl0 15|16 |16 |17
multf | f6 f20 [f1 |3 10 divf f12 | f10 |16

addf | f12 | f6 f2 (4 11 (12 |13 addi | r20 |r20 17118 |18 |19
addi | r10 |rl0 5 6 6 7 subi |rl rl 18119 (19 |20
divf |f13 |[f12 |fl0 |6 14 | 22 bne | -- rl 19 | -- -- --
addi | r20 |r20 7 9 stf -- r20 | 20

subi |rl rl 8 10 Idf f20 | r10 21

bne | -- rl 9 - |- --

stf -- f13 | r20 | 10

|df f20 | rl0 11 |12 (14 |15

|df f10 | rl0 12 |13 |15 |16

multf | f6 f20 |f1 |13 [16 |19 |20

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 22: First->Second- >Third Divf

N rd rs rt I El |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1 addf | f12 |f6 2 14 |21 |22

|df f10 | rl10 2 addi | r10 |rl0 15|16 |16 |17
multf | f6 f20 [f1 |3 10 divf f12 | f10 |16

addf | f12 | f6 f2 (4 11 (12 |13 addi | r20 |r20 17118 |18 |19
addi | r10 |rl0 5 6 6 7 subi |rl rl 18119 (19 |20
divf |f13 |[f12 |fl0 |6 14 | 22 bne | -- rl 19 | -- -- --
addi | r20 |r20 7 9 stf -- r20 | 20

subi |rl rl 8 10 |df f20 | rl0 21| 22 | 24*
bne | -- rl 9 - |- -- Idf f10 | r10 22

stf -- f13 | r20 | 10

|df f20 | rl0 11 |12 (14 |15

|df f10 | rl0 12 |13 |15 |16

multf | f6 f20 |f1 |13 [16 |19 |20

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 23: First->Second- >Third Divf

N rd rs rt I El |EF [WB [|N rd rs rt I E1l |EF | WB
|df f20 | rl0 1 addf | f12 | 6 f2 14|21 (22 |23
|df f10 | rl10 2 addi | r10 |rl0 15|16 |16 |17
multf | f6 f20 [f1 |3 10 divf f12 | f10 | 16

addf | f12 | f6 f2 (4 11 (12 |13 addi | r20 |r20 17118 |18 |19
addi | r10 |rl0 5 6 6 7 subi |rl rl 18119 (19 |20
divf |13 |f12 |fl0 |6 14 |22 |23 bne | -- rl 19 | -- -- --
addi | r20 |r20 7 9 stf -- r20 | 20

subi |rl rl 8 10 |df f20 | rl10 21|22 | 24*
bne | -- rl 9 - |- -- |df f10 | rl0 22 | 23 | 25*

stf -- f13 | r20 | 10 multf | f6 f20 | f1 23

|df f20 | rl0 11 |12 (14 |15

|df f10 | rl0 12 |13 |15 |16

multf | 16 f20 |f1 |13 [16 |19 |20

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 24: First->Second- >Third Divf

N rd rs rt I E1l |EF [WB [|N rd rs rt I El |EF | WB
|df f20 | rl0 1 addf | f12 |6 f2 14|21 |22 |23
|df f10 | rl10 2 addi | r10 |rl0 15|16 |16 |17
multf | f6 f20 [f1 |3 10 divf f12 |f10 |16 |24 | 32*
addf | f12 | f6 f2 (4 11 (12 |13 addi | r20 |r20 17118 |18 |19
addi | r10 |rl0 5 6 6 7 subi |rl rl 18119 (19 |20
divf |f13 |f12 |fl0 |6 14 |22 |23 bne | -- rl 19 | -- -- --
addi | r20 |r20 7 9 stf -- r20 | 20

subi |rl rl 8 10 |df f20 | rl0 21|22 |24
bne | -- rl 9 - |- -- |df f10 | rl0 22

stf -- f13 |(r20 |10 |24 | 26* multf | f6 20 | fl1 23

|df f20 | rl0 11 |12 (14 |15

|df f10 | rl0 12 |13 |15 |16

multf | f6 f20 |f1 |13 [16 |19 |20

Q CS 152 Review Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 23: First->Second- >Third Divf
Divf1: Issued 6 Finished 23
Divf2: Issued 16 Finished 33
Divf3: Issued ?? Finished ??

We’re Done!

ﬂ CS 152 Review

Jack Kang and Kurt Meinz

Question 3:

Tomasulo Trace: CC 23: First->Second- >Third Divf
Divf1: Issued 6 Finished 23
Divf2: Issued 16 Finished 33
Divf3: Issued 26 Finished 43

We’re Done!

The second divf issues before the first finished, so we
will need at least 2 entries.

The first finishes before the third issues, so we will
need at most 2 entries.

ZT?erefore, we nheed 2 entries.
CS 152 Review Jack Kang and Kurt Meinz

TLB

A. miss

B. miss

C. miss

D. miss

E. hit

F. hit

G. hit

H. hit

Page Cache
table

MIisSS miss
miss hit

hit miss
hit hit
MISS MISS
miss hit

hit miss

hit hit

ﬂ CS 152 Review

Question 4

Jack Kang and Kurt Meinz

TLB

1. miss

2. Miss

3. miss

4. miss

5. hit

6. hit

7. hit

8. hit

Question 4

Page Cache Possible? If so, under what circumstance

table
MISS MISS

miss hit

hit miss

hit hit

MISS MIssS

miss hit

hit miss

hit hit

ﬂ CS 152 Review

TLB misses and is followed by a page fault; after retry,
data must miss in cache.

Impossible: data cannot be allowed in cache if the page
IS not in memory.

TLB misses, but entry found in page table; after retry,
data misses in cache.

TLB misses, but entry found in page table; after retry,
data is found in cache.

Impossible: cannot have a translation in TLB if page is
not present in memory.

Impossible: cannot have a translation in TLB if page is
not present in memory.

Possible, although the page table is never really checked
if TLB hits.

Possible, although the page table is never really checked
if TLB hits.

Jack Kang and Kurt Meinz

