
CS 152 L03 FPGA (1) Patterson Fall 2003 © UCB

2003-09-02

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

CS152 – Computer Architecture and
Engineering

Lecture 3 – Field Programmable Gate Arrays

CS 152 L03 FPGA (2) Patterson Fall 2003 © UCB

Review: Verilog

°Verilog allows both structural and
behavioral descriptions, helpful in testing

°Some special features only in Hardware
Description Languages

• # time delay, nonblocking assignments,
initial vs. always, forever loops

°Syntax a mixture of C (operators, for,
while, if, print) and Ada (begin… end,
case…endcase, module …endmodule)

°Verilog can describe everything from
single gate to full computer system; you
get to design a simple processor

CS 152 L03 FPGA (3) Patterson Fall 2003 © UCB

Multiple Review
°Multiply: successive refinement to see
final design

• 1st iteration:
64-bit Adder,
64-bit Multiplicand shift register,
32-bit Multiplier shit register,
64-bit Product register

• 3rd iteration:
32-bit Adder,
64-bit Product/Mutiplier shift register,
32-bit Multiplicand Register

• There are algorithms that calculate many bits
of multiply per cycle
(see exercises 4.36 to 4.39 in COD)

CS 152 L03 FPGA (4) Patterson Fall 2003 © UCB

Outline

°FPGAs Overview
°Why use FPGAs?
(a short history lesson).

°FPGA variations
° Internal logic blocks.
°Designing with FPGAs.
°Specifics of Xilinx Virtex-E series.

CS 152 L03 FPGA (5) Patterson Fall 2003 © UCB

FPGA Overview
° Basic idea: 2D array of combination logic blocks

(CL) and flip-flops (FF) with a means for the user
to configure both:
1. the interconnection between the logic blocks,
2. the function of each block.

Simplified version of FPGA internal architecture

CS 152 L03 FPGA (6) Patterson Fall 2003 © UCB

Why FPGAs? (1 / 5)
° By the early 1980’s most of logic circuits in typical

systems were absorbed by a handful of standard
large scale integrated circuits (LSI ICs).
• Microprocessors, bus/IO controllers, system timers, ...

° Every system still needed random small
“glue logic” ICs to help connect the large ICs:
• generating global control signals (for resets etc.)
• data formatting (serial to parallel, multiplexing, etc.)

° Systems had a few LSI components and lots of
small low density SSI (small scale IC) and MSI
(medium scale IC) components.

Printed Circuit (PC)
board with many
small SSI and MSI ICs
and a few LSI ICs

CS 152 L03 FPGA (7) Patterson Fall 2003 © UCB

Why FPGAs? (2 / 5)
° Custom ICs sometimes designed to replace glue logic:

• reduced complexity/manufacturing cost, improved performance
• But custom ICs expensive to develop, and delay introduction of

product (“time to market”) because of increased design time

° Note: need to worry about two kinds of costs:
1. cost of development, “Non-Recurring Engineering (NRE)”, fixed
2. cost of manufacture per unit, variable
Usually tradeoff between NRE cost and manufacturing costs

Few Medium Many

Units manufactured

To
ta

l C
os

t

NRE
NRE

CS 152 L03 FPGA (8) Patterson Fall 2003 © UCB

Why FPGAs? (3 / 5)
° Therefore custom IC approach was only viable for

products with very high volume (where NRE could
be amortized), and not sensitive in time to market
(TTM)

° FPGAs introduced as alternative to custom ICs for
implementing glue logic:
• improved PC board density vs. discrete SSI/MSI

components (within around 10x of custom ICs)
• computer aided design (CAD) tools meant circuits could

be implemented quickly (no physical layout process, no
mask making, no IC manufacturing), relative to
Application Specific ICs (ASICs)
(3-6 months for these steps for custom IC)

- lowers NREs (Non Recurring Engineering)
- shortens TTM (Time To Market)

° Because of Moore’s law the density (gates/area) of
FPGAs continued to grow through the 80’s and
90’s to the point where major data processing
functions can be implemented on a single FPGA.

CS 152 L03 FPGA (9) Patterson Fall 2003 © UCB

Why FPGAs? (4 / 5)
° FPGAs continue to compete with custom

ICs for special processing functions (and
glue logic) but now try to compete with
microprocessors in dedicated and
embedded applications
• Performance advantage over microprocessors

because circuits can be customized for the task
at hand. Microprocessors must provide special
functions in software (many cycles)

° MICRO: Highest NRE, SW: fastest TTM
° ASIC: Highest performance, worst TTM
° FPGA: Highest cost per chip (unit cost)

CS 152 L03 FPGA (10) Patterson Fall 2003 © UCB

Why FPGAs? (5 / 5)

°As Moore’s Law continues, FPGAs
work for more applications as both
can do more logic in 1 chip and faster

°Can easily be “patched” vs. ASICs
°Perfect for courses:

• Can change design repeatedly
• Low TTM yet reasonable speed

°With Moore’s Law, now can do full
CS 152 project easily inside 1 FPGA

CS 152 L03 FPGA (11) Patterson Fall 2003 © UCB

Administrivia

°Prerequisite Quiz Results
°Lab 1 due tomorrow
°How many bought $37 PRS Transmitor ?
from behind ASUC textbook desk

(Chem 1A, CS 61ABC, 160)
•Can sell back to bookstore

CS 152 L03 FPGA (12) Patterson Fall 2003 © UCB

Where are FPGAs in the IC Zoo?
Source: Dataquest Logic

Standard
Logic ASIC

Programmable
Logic Devices
(PLDs)

Gate
Arrays

Cell-Based
ICs

Full Custom
ICs

CPLDs
SPLDs
(PALs) FPGAs

Acronyms
SPLD = Simple Prog. Logic Device
PAL = Prog. Array of Logic
CPLD = Complex PLD
FPGA = Field Prog. Gate Array

(Standard logic is SSI or MSI buffers, gates)

Common Resources
Configurable Logic Blocks (CLB)

Memory Look-Up Table
AND-OR planes

Simple gates
Input / Output Blocks (IOB)

Bidirectional, latches, inverters, pullup/pulldowns
Interconnect or Routing

Local, internal feedback, and global

CS 152 L03 FPGA (13) Patterson Fall 2003 © UCB

FPGA Variations
° Families of FPGA’s differ in:

• physical means of implementing
user programmability,

• arrangement of interconnection
wires, and

• basic functionality of logic blocks

° Most significant difference is in
the method for providing flexible
blocks and connections:

° Anti-fuse based (ex: Actel)

+ Non-volatile, relatively small
- fixed (non-reprogrammable)
(Almost used in 150 Lab:

only 1-shot at getting it
right!)

CS 152 L03 FPGA (14) Patterson Fall 2003 © UCB

User Programmability
° Latches are used to:

1. make or break cross-point
connections in interconnect

2. define function of logic
blocks

3. set user options:
- within the logic blocks
- in the input/output blocks
- global reset/clock

° “Configuration bit stream”
loaded under user control:

• All latches are strung
together in a shift chain

• “Programming” =>
creating bit stream

° Latch-based
(Xilinx, Altera, …)

+reconfigurable
- volatile
- relatively large die

size

- Note: Today 90%
die is interconnect,
10% is gates

latch

CS 152 L03 FPGA (15) Patterson Fall 2003 © UCB

Idealized FPGA Logic Block

°4-input Look Up Table (4-LUT)
• implements combinational logic functions

°Register
• optionally stores output of LUT
• Latch determines whether read reg or LUT

4-LUT FF
1

0

latch
Logic Block set by configuration

bit-stream

4-input "look up table"

OUTPUTINPUTS

CS 152 L03 FPGA (16) Patterson Fall 2003 © UCB

4-LUT Implementation
° n-bit LUT is actually

implemented as a
2n x 1 memory:
• inputs choose one of 2n

memory locations.
• memory locations (latches)

are normally loaded with
values from user’s
configuration bit stream.

• Inputs to mux control are
the CLB (Configurable
Logic Block) inputs.

° Result is a general
purpose “logic gate”.
• n-LUT can implement any

function of n inputs!

latch

latch

latch

latch

16 x 1
mux

16

INPUTS

OUTPUT

Latches programmed as part
of configuration bit-stream

CS 152 L03 FPGA (17) Patterson Fall 2003 © UCB

LUT as general logic gate
° An n-lut as a direct

implementation of a function
truth-table

° Each latch location holds value
of function corresponding to
one input combination

0000 F(0,0,0,0)
0001 F(0,0,0,1)
0010 F(0,0,1,0)
0011 F(0,0,1,1)
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUTS
store in 1st latch
store in 2nd latch

Example: 4-lut

Example: 2-lut
ORANDINPUTS

11 1 1
10 0 1
01 0 1
00 0 0

Implements any function of 2
inputs.

How many functions of n inputs?

CS 152 L03 FPGA (18) Patterson Fall 2003 © UCB

More functionality for “free”?

° Given basic idea
• LUT built from RAM
• Latches connected as shift register

° What other functions could be
provided at very little extra cost?

1. Using CLB latches as little RAM vs.
logic

2. Using CLB latches as shift register
vs. logic

CS 152 L03 FPGA (19) Patterson Fall 2003 © UCB

RAM16X1S

O

D
WE

WCLK
A0
A1
A2
A3

RAM32X1S

O

D
WE
WCLK
A0
A1
A2
A3
A4

RAM16X2S

O1

D0

WE
WCLK
A0
A1
A2
A3

D1

O0

=

=
LUT

LUT or

LUT

RAM16X1D

SPO

D
WE

WCLK
A0
A1
A2
A3
DPRA0 DPO
DPRA1
DPRA2
DPRA3

or

1. “Distributed RAM”

° CLB LUT configurable as
Distributed RAM

• A LUT equals 16x1 RAM
• Implements Single and

Dual-Ports
• Cascade LUTs to increase

RAM size

° Synchronous write
° Synchronous/Asynchrono

us read
• Accompanying flip-flops

used for synchronous read

CS 152 L03 FPGA (20) Patterson Fall 2003 © UCB

D Q
CE

D Q
CE

D Q
CE

D Q
CE

LUT
IN

CE
CLK

DEPTH[3:0]

OUTLUT =

2. Shift Register

° Each LUT can be
configured as shift
register

• Serial in, serial out

° Saves resources: can
use less than 16 FFs

° Faster: no routing

° Note: CAD tools
determine with CLB
used as LUT, RAM, or
shift register, rather
than up to designer

CS 152 L03 FPGA (21) Patterson Fall 2003 © UCB

How Program: FPGA Generic Design Flow

° Design Entry:
• Create your design files using:

- schematic editor or
- hardware description language (Verilog, VHDL)

° Design “implementation” on FPGA:
• Partition, place, and route (“PPR”) to create bit-stream file
• Divide into CLB-sized pieces, place into blocks, route to blocks

° Design verification:
• Use Simulator to check function,
• Other software determines max clock frequency.
• Load onto FPGA device (cable connects PC to board)

- check operation at full speed in real environment.

CS 152 L03 FPGA (22) Patterson Fall 2003 © UCB

Example Partition, Placement, and Route
° Example Schematic

Circuit:
• collection of gates

and flip-flops

° Idealized FPGA structure:

Circuit combinational logic must be “covered” by 4-input 1-output “gates”.
Flip-flops from circuit must map to FPGA flip-flops.
(Best to preserve “closeness” to CL to minimize wiring.)
Placement in general attempts to minimize wiring.

CS 152 L03 FPGA (23) Patterson Fall 2003 © UCB

Xilinx Vittex-E Routing Hierarchy

SINGLE

HEX

LONG

SINGLE

HEX

LONG

SI
N

G
L

E

H
E

X

L
O

N
G

SI
N

G
L

E

H
E

X

L
O

N
G

TRISTATE BUSSES

SWITCH
MATRIX

SLICE SLICE

Local
Feedback

C
A

R
R

Y

C
A

R
R

Y

CLB

C
A

R
R

Y

C
A

R
R

Y

DIRECT
CONNECTION

INTERNAL BUSSES

Single-length lines
Buffered Hex lines (1/6 blocks)

Direct connections

Long lines and Global lines
Internal 3-state Bus

° 24 single-length lines
• Route GRM signals to adjacent GRMs in 4 directions

° 96 buffered hex lines
• Route GRM (general routing matrix) signals to another GRMs six

blocks away in each of the 4 directions

° 12 buffered Long lines
• Routing across top and bottom, left and right

Note:
CAD tools
do PPR, not
designers

CS 152 L03 FPGA (24) Patterson Fall 2003 © UCB

Virtex-E Configurable Logic Block (CLB)
2 “logic slices” / CLB, two 4-LUTs / slice
=> Four 4-LUTs / CLB

CS 152 L03 FPGA (25) Patterson Fall 2003 © UCB

Peer Instruction
° How would you place ASIC, FPGA, and

Microprocessors+software
from best to worst?

• Performance?
• Non Recurring Engineering?
• Unit cost?
• Time To Market?
1. ASIC, FPGA, MICRO
2. ASIC, MICRO, FPGA
3. FPGA, ASIC, MICRO
4. FPGA, MICRO, ASIC
5. MICRO, ASIC, FPGA
6. MICRO, FPGA, ASIC

CS 152 L03 FPGA (27) Patterson Fall 2003 © UCB

Virtex-E CLB Slice Structure
° Each slice contains two sets of the

following:
• Four-input LUT

- Any 4-input logic function
- Or 16-bit x 1 sync RAM
- Or 16-bit shift register

• Carry & Control
- Fast arithmetic logic
- Multiplexer logic
- Multiplier logic

• Storage element
- Latch or flip-flop
- Set and reset
- True or inverted inputs
- Sync. or async. control

CS 152 L03 FPGA (28) Patterson Fall 2003 © UCB

Details of Virtex-E Slice
Very fast ripple carry:
(24-bit @ 100 MHz)

Multiplexors to help
combine CLBs into
larger multiplexor

CS 152 L03 FPGA (29) Patterson Fall 2003 © UCB

CLB

MUXF6

Slice

LUT

LUT
MUXF5

Slice

LUT

LUT
MUXF5

Virtex-E Dedicated Expansion Multiplexers
° Since 4-LUT has 4 inputs, max is

2:1 Mux (2 inputs, 1 control line)

° MUXF5 combines 2 LUTs to
create

• 4x1 multiplexer
• Or any 5-input function (5-LUT)
• Or selected functions up to 9 inputs

° MUXF6 combines 2 slices to form
• 8x1 multiplexer
• Or any 6-input function (6-LUT)
• Or selected functions up to 19

inputs

° Dedicated muxes are faster and
more space efficient

CS 152 L03 FPGA (30) Patterson Fall 2003 © UCB

Xilinx Virtex-E Chip Floorplan

° Input / Output Blocks (IOBs)
° Configurable Logic Blocks

(CLBs)
° Block RAMs (BRAMs)

(discussed soon)
° Delay Locked Loop (DLL)

(discussed soon)
° “VersaRing” =

CS 152 L03 FPGA (31) Patterson Fall 2003 © UCB

Block RAM

Spartan-IIE
True Dual-Port

Block RAM

Port A

Port B

Block RAM (Extra RAM not using LUTs)

° Most efficient memory implementation
• Dedicated blocks of memory

° Ideal for most memory requirements
• Virtex-E XCV2000 has 160? blocks

- 4096 bits per blocks
• Use multiple blocks for larger memories

° Builds both single and true dual-port RAMs

° CORE Generator provides custom-sized block RAMs
• Quickly generates optimized RAM implementation

CS 152 L03 FPGA (32) Patterson Fall 2003 © UCB

Virtex-E Block RAM

°Flexible 4096-bit block… Variable
aspect ratio

• 4096 x 1
• 2048 x 2
• 1024 x 4
• 512 x 8
• 256 x 16

° Increase memory depth or width by
cascading blocks

CS 152 L03 FPGA (33) Patterson Fall 2003 © UCB

Virtex-E Delay Lock Loop (DLL) Capabilities

° Easy clock duplication
• System clock distribution
• Cleans and reconditions incoming clock

° Quick and easy frequency adjustment
° Single crystal easily generates multiple

clocks

° Excellent for advance memory types

° De-skew incoming clock
° Generate fast setup and hold time or

fast clock-to-outs
Clock

De-skew

CS 152 L03 FPGA (34) Patterson Fall 2003 © UCB

66MHz - 2x Clock Multiplication

66 MHz 132 MHz
(Multiply by 2) DLL

DLL: Multiplication of Clock Speed

° Have faster internal
clock relative to
external clock source

° Use 1 DLL for 2x
multiplication

° Combine 2 DLLs for
4x multiplication

° Reduce board EMI
• Route low-frequency

clock externally and
multiply clock on-chip

CS 152 L03 FPGA (35) Patterson Fall 2003 © UCB

Clock x2 and Clock ÷2

30 MHz
(180° Shift) 60 MHz

(Multiply by 2)

30 MHz
(180° Shift)

DLL
30 MHz

Used for FB

180° Phase Shift

30 MHz

15 MHz
(Divide by 2)DLL

DLL: Division of Clock Speed
° Selectable division values

• 1.5, 2, 2.5, 3, 4, 5, 8, or 16

° Cascade DLLs to combine functions
• Combine DLLs to multiply and divide to get

desired speed

° 50/50 duty cycle correction available

CS 152 L03 FPGA (36) Patterson Fall 2003 © UCB

Clock Management Summary
°All digital DLL Implementation

• Input noise rejection
• 50/50 duty cycle correction

°Clock mirror provides system clock
distribution

°Multiply input clock by 2x or 4x

°Divide clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16

°De-skew clock for fast setup, hold, or
clock-to-out times

CS 152 L03 FPGA (37) Patterson Fall 2003 © UCB

Virtex-E Family of Parts

CS 152 L03 FPGA (38) Patterson Fall 2003 © UCB

Summary: Xilinx FPGAs

°How they differ from idealized array:
• In addition to their use as general logic
“gates”, LUTs can alternatively be used as
general purpose RAM or shift register

- Each 4-LUT can become a 16x1-bit RAM array
• Special circuitry to speed up “ripple carry”
in adders and counters

- Therefore adders assembled by the CAD tools
operate much faster than adders built from
gates and LUTs alone.

• Many more wires, including tri-state
capabilities.

CS 152 L03 FPGA (40) Patterson Fall 2003 © UCB

Backup Slides FYI

CS 152 L03 FPGA (41) Patterson Fall 2003 © UCB

COUT

Look-Up
Table

SLICE0CIN

COUT

O

Look-Up
Table

Carry
&

Control
Logic

Look-Up
Table

SLICE1CIN
CLB

Look-Up
Table

B1
B0

A1
A0

C1
C0

SUM1

SUM0
PARTIAL0

PARTIAL1
Carry

&
Control
Logic

Carry
&

Control
Logic

Carry
&

Control
Logic

3 Operand Adder Function

° A, B, C are two-bits wide
• SUM = A + B + C or PARTIAL + C, where PARTIAL = A + B
• Implementation

- First 2-operand sum ‘A+B’ is performed in Slice 0
- Second 2-operand sum ‘PARTIAL + C’ is performed in Slice 1

• Fast local feedback connection within the CLB
- Very small delay for on PARTIAL

CS 152 L03 FPGA (42) Patterson Fall 2003 © UCB

CO
DI CI
S

LUT

CY_MUX

CY_XOR

MULT_AND

A

B

A x B

Dedicated AND gate

Dedicated CLB Multiplier Logic

° Dedicated AND gate
° Highly efficient ‘Shift & Add’ implementation

• For a 16x16 Multiplier
- 30% reduction in area and one less logic level

CS 152 L03 FPGA (43) Patterson Fall 2003 © UCB

Xilinx FPGAs (interconnect detail)

CS 152 L03 FPGA (44) Patterson Fall 2003 © UCB

Virtex-E Input/Output block (IOB) detail

