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Review: Verilog

°Verilog allows both structural and 
behavioral descriptions, helpful in testing

°Some special features only in Hardware 
Description Languages

• # time delay, nonblocking assignments, 
initial vs. always, forever loops 

°Syntax a mixture of C (operators, for, 
while, if, print) and Ada (begin… end, 
case…endcase, module …endmodule)

°Verilog can describe everything from 
single gate to full computer system; you 
get to design a simple processor
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Multiple Review
°Multiply: successive refinement to see 
final design 

• 1st iteration: 
64-bit Adder, 
64-bit Multiplicand shift register, 
32-bit Multiplier shit register, 
64-bit Product register 

• 3rd iteration: 
32-bit Adder, 
64-bit Product/Mutiplier shift register, 
32-bit Multiplicand Register

• There are algorithms that calculate many bits 
of multiply per cycle 
(see exercises 4.36  to 4.39 in COD)
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Outline

°FPGAs Overview
°Why use FPGAs?
(a short history lesson).

°FPGA variations
° Internal logic blocks.
°Designing with FPGAs.
°Specifics of Xilinx Virtex-E series.
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FPGA Overview
° Basic idea: 2D array of combination logic blocks 

(CL) and flip-flops (FF) with a means for the user 
to configure both:
1. the interconnection between the logic blocks,
2. the function of each block.

Simplified version of FPGA internal architecture
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Why FPGAs? (1 / 5)
° By the early 1980’s most of logic circuits in typical 

systems were absorbed by a handful of standard 
large scale integrated circuits (LSI ICs). 
• Microprocessors, bus/IO controllers, system timers, ...

° Every system still needed random small 
“glue logic” ICs to help connect the large ICs:
• generating global control signals (for resets etc.)
• data formatting (serial to parallel, multiplexing, etc.) 

° Systems had a few LSI components and lots of 
small low density SSI (small scale IC) and MSI 
(medium scale IC) components.

Printed Circuit (PC) 
board with many 
small SSI and MSI ICs 
and a few LSI ICs
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Why FPGAs? (2 / 5)
° Custom ICs sometimes designed to replace glue logic:

• reduced complexity/manufacturing cost, improved performance
• But custom ICs expensive to develop, and delay introduction of 

product (“time to market”) because of increased design time

° Note: need to worry about two kinds of costs:
1. cost of development, “Non-Recurring Engineering (NRE)”, fixed
2. cost of manufacture per unit, variable
Usually tradeoff between NRE cost and manufacturing costs

Few Medium Many

Units manufactured

To
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t

NRE
NRE
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Why FPGAs? (3 / 5)
° Therefore custom IC approach was only viable for 

products with very high volume (where NRE could 
be amortized), and not sensitive in time to market 
(TTM)

° FPGAs introduced as alternative to custom ICs for 
implementing glue logic:
• improved PC board density vs. discrete SSI/MSI 

components (within around 10x of custom ICs)
• computer aided design (CAD) tools meant circuits could 

be implemented quickly (no physical layout process, no 
mask making, no IC manufacturing), relative to 
Application Specific ICs (ASICs) 
(3-6 months for these steps for custom IC)

- lowers NREs (Non Recurring Engineering)
- shortens TTM (Time To Market)

° Because of Moore’s law the density (gates/area) of 
FPGAs continued to grow through the 80’s and 
90’s to the point where major data processing 
functions can be implemented on a single FPGA.
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Why FPGAs? (4 / 5)
° FPGAs continue to compete with custom 

ICs for special processing functions (and 
glue logic) but now try to compete with 
microprocessors in dedicated and 
embedded applications
• Performance advantage over microprocessors 

because circuits can be customized for the task 
at hand.  Microprocessors must provide special 
functions in software (many cycles)

° MICRO: Highest NRE, SW: fastest TTM
° ASIC: Highest performance, worst TTM
° FPGA: Highest cost per chip (unit cost)
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Why FPGAs? (5 / 5)

°As Moore’s Law continues, FPGAs 
work for more applications as both 
can do more logic in 1 chip and faster

°Can easily be “patched” vs. ASICs
°Perfect for courses:

• Can change design repeatedly
• Low TTM yet reasonable speed

°With Moore’s Law, now can do full 
CS 152 project easily inside 1 FPGA
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Administrivia

°Prerequisite Quiz Results
°Lab 1 due tomorrow
°How many bought $37 PRS Transmitor ?
from behind ASUC textbook desk 

(Chem 1A, CS 61ABC, 160)
•Can sell back to bookstore 
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Where are FPGAs  in the IC Zoo?
Source:  Dataquest Logic

Standard
Logic ASIC

Programmable
Logic Devices
(PLDs)

Gate
Arrays

Cell-Based
ICs

Full Custom
ICs

CPLDs
SPLDs
(PALs) FPGAs

Acronyms
SPLD = Simple Prog. Logic Device 
PAL    = Prog. Array of Logic
CPLD = Complex PLD
FPGA = Field Prog. Gate Array

(Standard logic is SSI or MSI buffers, gates)

Common Resources
Configurable Logic Blocks (CLB)

Memory Look-Up Table
AND-OR planes

Simple gates
Input / Output Blocks (IOB)

Bidirectional, latches, inverters, pullup/pulldowns
Interconnect or Routing

Local, internal feedback, and global
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FPGA Variations
° Families of FPGA’s differ in:

• physical means of implementing 
user programmability,

• arrangement of interconnection 
wires, and

• basic functionality of logic blocks

° Most significant difference is in 
the method for providing flexible 
blocks and connections: 

° Anti-fuse based (ex: Actel)

+ Non-volatile, relatively small
- fixed (non-reprogrammable)
(Almost used in 150 Lab: 

only 1-shot at getting it 
right!)
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User Programmability
° Latches are used to:

1. make or break cross-point 
connections in interconnect

2. define function of logic 
blocks

3. set user options:
- within the logic blocks
- in the input/output blocks
- global reset/clock

° “Configuration bit stream” 
loaded under user control:

• All latches are strung 
together in a shift chain

• “Programming” => 
creating bit stream

° Latch-based
(Xilinx, Altera, …)

+reconfigurable
- volatile
- relatively large die 

size

- Note: Today 90% 
die is interconnect, 
10% is gates

latch
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Idealized FPGA Logic Block

°4-input Look Up Table (4-LUT)
• implements combinational logic functions

°Register
• optionally stores output of LUT
• Latch determines whether read reg or LUT

4-LUT FF
1

0

latch
Logic Block set by configuration 

bit-stream

4-input "look up table"

OUTPUTINPUTS
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4-LUT Implementation
° n-bit LUT is actually 

implemented as a 
2n x 1 memory:
• inputs choose one of 2n 

memory locations.
• memory locations (latches) 

are normally loaded with 
values from user’s 
configuration bit stream.

• Inputs to mux control are 
the CLB (Configurable 
Logic Block) inputs.

° Result is a general 
purpose “logic gate”.  
• n-LUT can implement any

function of n inputs!

latch

latch

latch

latch

16 x 1
mux

16

INPUTS

OUTPUT

Latches programmed as part
of configuration bit-stream
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LUT as general logic gate
° An n-lut as a direct 

implementation of a function 
truth-table

° Each latch location holds value 
of function corresponding to 
one input combination

0000    F(0,0,0,0)
0001    F(0,0,0,1)
0010    F(0,0,1,0)
0011    F(0,0,1,1)
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

INPUTS
store in 1st latch
store in 2nd latch

Example: 4-lut

Example: 2-lut
ORANDINPUTS

11     1     1
10     0     1
01     0     1
00     0     0

Implements any function of 2 
inputs.  

How many functions of n inputs?
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More functionality for “free”? 

° Given basic idea
• LUT built from RAM
• Latches connected as shift register

° What other functions could be 
provided at very little extra cost?

1. Using CLB latches as little RAM vs. 
logic

2. Using CLB latches as shift register 
vs. logic
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RAM16X1S

O

D
WE

WCLK
A0
A1
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RAM32X1S

O
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WE
WCLK
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A1
A2
A3
A4

RAM16X2S

O1

D0

WE
WCLK
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=
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LUT or

LUT

RAM16X1D

SPO

D
WE

WCLK
A0
A1
A2
A3
DPRA0 DPO
DPRA1
DPRA2
DPRA3

or

1. “Distributed RAM”

° CLB LUT configurable as 
Distributed RAM

• A LUT equals 16x1 RAM
• Implements Single and   

Dual-Ports
• Cascade LUTs to increase 

RAM size

° Synchronous write
° Synchronous/Asynchrono

us read
• Accompanying flip-flops 

used for synchronous read
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D Q
CE

D Q
CE

D Q
CE

D Q
CE

LUT
IN

CE
CLK

DEPTH[3:0]

OUTLUT =

2. Shift Register

° Each LUT can be 
configured as shift 
register

• Serial in, serial out

° Saves resources: can 
use less than 16 FFs

° Faster: no routing

° Note: CAD tools 
determine with CLB 
used as LUT, RAM, or 
shift register, rather 
than up to designer
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How Program: FPGA Generic Design Flow

° Design Entry:
• Create your design files using:

- schematic editor or 
- hardware description language (Verilog, VHDL)

° Design “implementation” on FPGA:
• Partition, place, and route (“PPR”) to create bit-stream file
• Divide into CLB-sized pieces, place into blocks, route to blocks

° Design verification:
• Use Simulator to check function,
• Other software determines max clock frequency.
• Load onto FPGA device (cable connects PC to board)

- check operation at full speed in real environment.
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Example Partition, Placement, and Route
° Example Schematic 

Circuit:
• collection of gates 

and flip-flops

° Idealized FPGA structure:

Circuit combinational logic must be “covered” by 4-input 1-output “gates”.
Flip-flops from circuit must map to FPGA flip-flops. 
(Best to preserve “closeness” to CL to minimize wiring.)
Placement in general attempts to minimize wiring.
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Xilinx Vittex-E Routing Hierarchy
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DIRECT
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Single-length lines
Buffered Hex lines (1/6 blocks)

Direct connections

Long lines and Global lines
Internal 3-state Bus

° 24 single-length lines
• Route GRM signals to adjacent GRMs in 4 directions

° 96 buffered hex lines
• Route GRM (general routing matrix) signals to another GRMs six 

blocks away in each of the 4 directions

° 12 buffered Long lines
• Routing across top and bottom, left and right

Note: 
CAD tools 
do PPR, not 
designers
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Virtex-E Configurable Logic Block (CLB)
2 “logic slices” / CLB, two 4-LUTs / slice
=> Four 4-LUTs / CLB
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Peer Instruction
° How would you place ASIC, FPGA, and 

Microprocessors+software 
from best to worst?

• Performance? 
• Non Recurring Engineering? 
• Unit cost? 
• Time To Market?
1. ASIC, FPGA, MICRO
2. ASIC, MICRO, FPGA 
3. FPGA, ASIC, MICRO
4. FPGA, MICRO, ASIC
5. MICRO, ASIC, FPGA
6. MICRO, FPGA, ASIC 
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Virtex-E CLB Slice Structure
° Each slice contains two sets of the 

following:
• Four-input LUT

- Any 4-input logic function
- Or 16-bit x 1 sync RAM
- Or 16-bit shift register

• Carry & Control
- Fast arithmetic logic
- Multiplexer logic
- Multiplier logic

• Storage element
- Latch or flip-flop
- Set and reset
- True or inverted inputs
- Sync. or async. control



CS 152 L03 FPGA (28) Patterson Fall 2003 © UCB

Details of Virtex-E Slice
Very fast ripple carry:
(24-bit @ 100 MHz)

Multiplexors to help
combine CLBs into 
larger multiplexor
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CLB

MUXF6

Slice

LUT

LUT
MUXF5

Slice

LUT

LUT
MUXF5

Virtex-E Dedicated Expansion Multiplexers
° Since 4-LUT has 4 inputs, max is 

2:1 Mux (2 inputs, 1 control line)

° MUXF5 combines 2 LUTs to 
create

• 4x1 multiplexer
• Or any 5-input function (5-LUT)
• Or selected functions up to 9 inputs

° MUXF6 combines 2 slices to form
• 8x1 multiplexer
• Or any 6-input function (6-LUT)
• Or selected functions up to 19 

inputs

° Dedicated muxes are faster and 
more space efficient
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Xilinx Virtex-E Chip Floorplan

° Input / Output Blocks (IOBs)
° Configurable Logic Blocks 

(CLBs)
° Block RAMs (BRAMs) 

(discussed soon)
° Delay Locked Loop (DLL) 

(discussed soon)
° “VersaRing” = 
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Block RAM

Spartan-IIE
True Dual-Port

Block RAM

Port A

Port  B

Block RAM (Extra RAM not using LUTs)

° Most efficient memory implementation
• Dedicated blocks of memory

° Ideal for most memory requirements
• Virtex-E XCV2000 has 160? blocks

- 4096 bits per blocks
• Use multiple blocks for larger memories

° Builds both single and true dual-port RAMs

° CORE Generator provides custom-sized block RAMs
• Quickly generates optimized RAM implementation
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Virtex-E Block RAM

°Flexible 4096-bit block… Variable 
aspect ratio

• 4096 x 1
• 2048 x 2
• 1024 x 4
• 512 x 8
• 256 x 16

° Increase memory depth or width by 
cascading blocks
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Virtex-E Delay Lock Loop (DLL) Capabilities

° Easy clock duplication
• System clock distribution 
• Cleans and reconditions incoming clock

° Quick and easy frequency adjustment
° Single crystal easily generates multiple 

clocks

° Excellent for advance memory types

° De-skew incoming clock
° Generate fast setup and hold time or 

fast clock-to-outs
Clock

De-skew
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66MHz - 2x Clock Multiplication

66 MHz 132 MHz
(Multiply by 2) DLL

DLL: Multiplication of Clock Speed

° Have faster internal 
clock relative to 
external clock source

° Use 1 DLL for 2x 
multiplication

° Combine 2 DLLs for 
4x multiplication

° Reduce board EMI
• Route low-frequency 

clock externally and 
multiply clock on-chip
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Clock  x2 and Clock  ÷2

30 MHz
(180° Shift) 60 MHz 

(Multiply by 2)

30 MHz 
(180° Shift)

DLL
30 MHz

Used for FB

180° Phase Shift

30 MHz

15 MHz 
(Divide by 2)DLL

DLL: Division of Clock Speed
° Selectable division values

• 1.5, 2, 2.5, 3, 4, 5, 8, or 16 

° Cascade DLLs to combine functions
• Combine DLLs to multiply and divide to get 

desired speed

° 50/50 duty cycle correction available
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Clock Management Summary
°All digital DLL Implementation

• Input noise rejection
• 50/50 duty cycle correction

°Clock mirror provides system clock 
distribution

°Multiply input clock by 2x or 4x

°Divide clock by 1.5, 2, 2.5, 3, 4, 5, 8, or 16

°De-skew clock for fast setup, hold, or 
clock-to-out times
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Virtex-E Family of Parts
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Summary: Xilinx FPGAs

°How they differ from idealized array:
• In addition to their use as general logic 
“gates”, LUTs can alternatively be used as 
general purpose RAM or shift register

- Each 4-LUT can become a 16x1-bit RAM array
• Special circuitry to speed up “ripple carry” 
in adders and counters

- Therefore adders assembled by the CAD tools 
operate much faster than adders built from 
gates and LUTs alone.

• Many more wires, including tri-state 
capabilities.
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Backup Slides FYI
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COUT
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SLICE1CIN
CLB

Look-Up
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B1
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C1
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SUM1

SUM0
PARTIAL0

PARTIAL1
Carry

&
Control
Logic

Carry
&

Control
Logic

Carry
&

Control
Logic

3 Operand Adder Function

° A, B, C are two-bits wide
• SUM = A + B + C or PARTIAL + C, where PARTIAL = A + B
• Implementation

- First 2-operand sum ‘A+B’ is performed in Slice 0
- Second 2-operand sum ‘PARTIAL + C’ is performed in Slice 1

• Fast local feedback connection within the CLB
- Very small delay  for on PARTIAL
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CO
DI CI
S

LUT

CY_MUX

CY_XOR

MULT_AND

A

B

A x B

Dedicated AND gate

Dedicated CLB Multiplier Logic

° Dedicated AND gate
° Highly efficient ‘Shift & Add’ implementation

• For a 16x16 Multiplier
- 30% reduction in area and one less logic level
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Xilinx FPGAs (interconnect detail)
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Virtex-E Input/Output block (IOB) detail


