
CS 152 L05 Performance and Design (1) Patterson Fall 2003 © UCB

2003-09-09

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

CS152 – Computer Architecture and
Engineering

Lecture 5 – Performance and Design Process

CS 152 L05 Performance and Design (2) Patterson Fall 2003 © UCB

Review
° Critical Path is longest among N parallel paths
° Setup Time and Hold Time determine how long

Input must be stable before and after trigger
clock edge

° Clock skew is difference between clock edge in
different parts of hardware; it affects clock
cycle time and can cause hold time, setup time
violations

° FSM specify control symbolically
• Moore machine easiest to understand, debug
• “One hot” reduces decoding for faster FSM

° Die size affects both dies/wafer and yield

CS 152 L05 Performance and Design (3) Patterson Fall 2003 © UCB

Outline this week
°Performance Review

• Latency v. Throughput, CPI, Benchmarks

°Philosophy of Design
• As decompsition (“divide and conquer”)
• As composition
• As refinement

°MIPS ALU as example design (if time)
°Online Notebook (next lecture)

• Capturing design and implementation
process, decisions so that can understand
evolution of design, fix bugs

CS 152 L05 Performance and Design (4) Patterson Fall 2003 © UCB

Two Notions of “Performance”

Plane

Boeing
747

BAD/Sud
Concorde

Top
Speed

DC to
Paris

Passen-
gers

Throughput
(pmph)

610
mph

6.5
hours 470 286,700

1350
mph

3
hours 132 178,200

•Which has higher performance?
•Time to deliver 1 passenger?
•Time to deliver 400 passengers?
•In a computer, time for 1 job called
Response Time or Execution Time
•In a computer, jobs per day called

Throughput or Bandwidth

CS 152 L05 Performance and Design (5) Patterson Fall 2003 © UCB

Definitions
°Performance is in units of things per sec

• bigger is better

° If we are primarily concerned with
response time

• performance(x) = 1
execution_time(x)

" X is n times faster than Y" means
Performance(X)

n =
Performance(Y)

CS 152 L05 Performance and Design (6) Patterson Fall 2003 © UCB

What is Time?
°Straightforward definition of time:

• Total time to complete a task, including disk
accesses, memory accesses, I/O activities,
operating system overhead, ...

• “real time”, “response time” or
“elapsed time”

°Alternative: just time processor (CPU)
is working only on your program (since
multiple processes running at same time)

• “CPU execution time” or “CPU time ”
• Often divided into system CPU time (in OS)
and user CPU time (in user program)

CS 152 L05 Performance and Design (7) Patterson Fall 2003 © UCB

How to Measure Time?
°User Time ⇒ seconds
°CPU Time: Computers constructed
using a clock that runs at constant rate

• These discrete time intervals called
clock cycles (or informally clocks or
cycles)

• Length of clock period: clock cycle time
(e.g., 250 picoseconds or 250 ps) and
clock rate (e.g., 4 gigahertz, or 4 GHz),
which is the inverse of the clock period;
use these!

CS 152 L05 Performance and Design (8) Patterson Fall 2003 © UCB

Measuring Time using Clock Cycles (1/2)

°or

= Clock Cycles for a program
Clock Rate

°CPU execution time for program
= Clock Cycles for a program

x Clock Cycle Time

CS 152 L05 Performance and Design (9) Patterson Fall 2003 © UCB

Measuring Time using Clock Cycles (2/2)

°One way to define clock cycles:
Clock Cycles for program
= Instructions for a program

(called “Instruction Count”)
x Average Clock cycles Per Instruction

(abbreviated “CPI”)
°CPI one way to compare two machines
with same instruction set, since
Instruction Count would be the same

CS 152 L05 Performance and Design (10) Patterson Fall 2003 © UCB

Performance Calculation (1/2)

°CPU execution time for program
= Clock Cycles for program

x Clock Cycle Time
°Substituting for clock cycles:

CPU execution time for program
= (Instruction Count x CPI)

x Clock Cycle Time
= Instruction Count x CPI x Clock Cycle Time

CS 152 L05 Performance and Design (11) Patterson Fall 2003 © UCB

Performance Calculation (2/2)

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Instructions x Cycles x Seconds
Program Instruction Cycle

CPU time = Seconds
Program

• Product of all 3 terms: if missing a term, can’t
predict time, the real measure of performance

CS 152 L05 Performance and Design (12) Patterson Fall 2003 © UCB

Administrivia

°HW #1 Due Wed 9/10 by 5 PM
• 3 homework boxes (1 / section) in 283 Soda

°Lab #2 done in pairs since 15 FPGA
boards, 33 PCs. Due Monday 9/15

°Form 4 or 5 person teams by Friday 9/12
• Who have full teams? Needs teammates?

°Office hours in Lab
• Mon 5 – 6:30 Jack, Tue 3:30-5 Kurt,
Wed 3 – 4:30 John

°Dave’s office hours Tue 3:30 – 5

CS 152 L05 Performance and Design (13) Patterson Fall 2003 © UCB

Computers in the Real World
° Problem: IB Prof. Dawson

monitors redwoods by
climbing trees, stringing
miles of wire, placing
printer sized data logger
in tree, collect data by
climbing trees (300’ high)

Solution: CS Prof. Culler proposes wireless
“micromotes” in trees. Automatically
network together (without wire). Size of film
canister, lasts for months on C battery,
much less expensive. Read data by walking
to base of tree with wireless laptop. “Will
revolutionize environmental monitoring”

http://www.berkeley.edu/news/media/releases/
2003/07/28_redwood.shtml

CS 152 L05 Performance and Design (14) Patterson Fall 2003 © UCB

How Calculate the 3 Components?

°Clock Cycle Time: in specification of
computer (Clock Rate in advertisements)

° Instruction Count:
• Count instructions in loop of small program
• Use simulator to count instructions
• Hardware counter in spec. register (most CPUs)

°CPI:
• Calculate: Execution Time / Clock cycle time

Instruction Count
• Hardware counter in special register (most
CPUs)

CS 152 L05 Performance and Design (15) Patterson Fall 2003 © UCB

Calculating CPI Another Way

°First calculate CPI for each individual
instruction (add, sub, and, etc.)

°Next calculate frequency of each
individual instruction

°Finally multiply these two for each
instruction and add them up to get
final CPI

CS 152 L05 Performance and Design (16) Patterson Fall 2003 © UCB

Example
Op Freqi CPIi Prod (% Time)
ALU 50% 1 .5 (33%)
Load 20% 2 .4 (27%)
Store 10% 2 .2 (13%)
Branch 20% 2 .4 (27%)

1.5

• What if Branch instructions twice as fast?

Instruction Mix (Where time spent)

CS 152 L05 Performance and Design (17) Patterson Fall 2003 © UCB

What Programs Measure for Comparison?
° Ideally run typical programs with
typical input before purchase,
or before even build machine

• Called a “workload”; For example:
• Engineer uses compiler, spreadsheet
• Author uses word processor, drawing
program, compression software

° In some situations its hard to do
• Don’t have access to machine to
“benchmark” before purchase

• Don’t know workload in future

CS 152 L05 Performance and Design (18) Patterson Fall 2003 © UCB

Benchmarks

°Obviously, apparent speed of
processor depends on code used to
test it

°Need industry standards so that
different processors can be fairly
compared

°Companies exist that create these
benchmarks: “typical” code used to
evaluate systems

°Need to be changed every 2 or 3 years
since designers could target these
standard benchmarks

CS 152 L05 Performance and Design (19) Patterson Fall 2003 © UCB

Example Standardized Workload Benchmarks
°Workstations: Standard Performance
Evaluation Corporation (SPEC)

• SPEC95: 8 integer (gcc, compress, li, ijpeg,
perl, ...) & 10 floating-point (FP) programs
(hydro2d, mgrid, applu, turbo3d, ...)

• SPEC2000: 11 integer (gcc, bzip2, …) , 18 FP
(mgrid, swim, ma3d, …)

• www.spec.org
• Separate average for integer and FP
• Benchmarks distributed in source code
• Company representatives select workload
• Compiler, machine designers target
benchmarks, so try to change every 3 years

CS 152 L05 Performance and Design (20) Patterson Fall 2003 © UCB

Performance Evaluation
°Good products created when have:

• Good benchmarks
• Good ways to summarize performance

°Given sales is a function of performance
relative to competition, should invest in
improving product as reported by
performance summary?

° If benchmarks/summary inadequate, then
choose between improving product for real
programs vs. improving product to get
more sales; Sales almost always wins!

CS 152 L05 Performance and Design (21) Patterson Fall 2003 © UCB

Amdahl's Law

Speedup due to enhancement E:
ExTime w/o E Performance w/ E

Speedup(E) = ------------- = -------------------

ExTime w/ E Performance w/o E

° Suppose that enhancement E accelerates a
fraction F of the task by a factor S, and the
remainder of the task is unaffected

° Then Maximum benefit:

Speedupmaximum =
1

1 - Fractiontimeaffected

CS 152 L05 Performance and Design (22) Patterson Fall 2003 © UCB

Things to Remember
°Latency v. Throughput
°Performance doesn’t depend on any
single factor: need to know Instruction
Count, Clocks Per Instruction and Clock
Rate to get valid estimations

°2 Defitnitions of times:
• User Time: time user needs to wait for
program to execute (multitasking affects)

• CPU Time: time spent executing a single
program: (no multitasking)

°Amdahl’s Law: law of diminishing returns

CS 152 L05 Performance and Design (23) Patterson Fall 2003 © UCB

Peer Instruction: find the best mismatch!
Designer choice:
A. Benchmark
B. Compiler
C. HW technology

Performance metric:
I. Instruction Count
II. CPI
III. Clock Rate

ABC6.
BAC5.
ACB4.
CAB3.
BCA2.
CBA1.
III.II.I.Doesn’t affect?

Match the metric with designer choice least likely to affect it

CS 152 L05 Performance and Design (24) Patterson Fall 2003 © UCB

Peer Instruction: Amdahl’s Law
° Suppose your benchmarks spend 80% of their

time on floating point multiply, and your boss
tells you the benchmarks must run 5 times
faster than it does now. How much faster must
you make the Floating Point multiplier?

1. 4X faster
2. 5X faster
3. 8X faster
4. 10X faster
5. You get another job, because it can’t be

done

CS 152 L05 Performance and Design (25) Patterson Fall 2003 © UCB

The Design Process
"To Design Is To Represent"

Design activity yields description/representation of an object

-- Traditional craftsman does not distinguish between the
conceptualization and the artifact

-- Separation comes about because of complexity

-- The concept is captured in one or more representation languages

-- This process IS design

Design Begins With Requirements

-- Functional Capabilities: what it will do

-- Performance Characteristics: Speed, Power, Area, Cost, . . .

CS 152 L05 Performance and Design (26) Patterson Fall 2003 © UCB

Design Process (cont.)

Design Finishes As Assembly

-- Design understood in terms of
components and how they have
been assembled

-- Top Down decomposition of
complex functions (behaviors)
into more primitive functions

-- bottom-up composition of primitive
building blocks into more complex assemblies

CPU

Datapath Control

ALU Regs Shifter

Nand
Gate

Design is a "creative process," not a simple method

CS 152 L05 Performance and Design (27) Patterson Fall 2003 © UCB

Design Refinement
Informal System Requirement

Initial Specification

Intermediate Specification

Final Architectural Description

Intermediate Specification of Implementation

Final Internal Specification

Physical Implementation

refinement
increasing level of detail

CS 152 L05 Performance and Design (28) Patterson Fall 2003 © UCB

Design as Search

Design involves educated guesses and verification

-- Given the goals, how should these be prioritized?

-- Given alternative design pieces, which should be selected?

-- Given design space of components & assemblies, which part will yield
the best solution?

Feasible (good) choices vs. Optimal choices

Problem A

Strategy 1 Strategy 2

SubProb 1 SubProb2 SubProb3

BB1 BB2 BB3 BBn

CS 152 L05 Performance and Design (29) Patterson Fall 2003 © UCB

Measurement and Evaluation
Architecture is an iterative process

-- searching the space of possible designs
-- at all levels of computer systems

Good IdeasGood Ideas
Mediocre Ideas

Bad Ideas

Cost /
Performance
Analysis

Design

Analysis

Creativity

CS 152 L05 Performance and Design (30) Patterson Fall 2003 © UCB

Problem: Design a “fast” ALU for the MIPS ISA

°Requirements?
°Must support the MIPS ISA

Arithmetic / Logic operations
°Tradeoffs of cost and speed based on
frequency of occurrence, hardware
budget

CS 152 L05 Performance and Design (31) Patterson Fall 2003 © UCB

MIPS ALU requirements

°Add, AddU, Sub, SubU, AddI, AddIU
• => 2’s complement adder/sub with overflow
detection

°And, Or, AndI, OrI, Xor, Xori, Nor
• => Logical AND, logical OR, XOR, nor

°SLTI, SLTIU (set less than)
• => 2’s complement adder with inverter,
check sign bit of result

°ALU from from P&H book chapter 4
supports these ops

CS 152 L05 Performance and Design (32) Patterson Fall 2003 © UCB

MIPS arithmetic instruction format

°Signed arithmetic generate overflow,
no carry

R-type:

I-Type:

31 25 20 15 5 0

op Rs Rt Rd funct

op Rs Rt Immed 16

Type op funct

ADDI 10 xx

ADDIU 11 xx

SLTI 12 xx

SLTIU 13 xx

ANDI 14 xx

ORI 15 xx

XORI 16 xx

LUI 17 xx

Type op funct

ADD 00 40

ADDU 00 41

SUB 00 42

SUBU 00 43

AND 00 44

OR 00 45

XOR 00 46

NOR 00 47

Type op funct

00 50

00 51

SLT 00 52

SLTU 00 53

CS 152 L05 Performance and Design (33) Patterson Fall 2003 © UCB

Design Trick: divide & conquer

° Trick #1: Break the problem into simpler problems,
solve them and glue together the solution

° Example: assume the immediates have been taken
care of before the ALU

• 10 operations (4 bits) 00 add

01 addU

02 sub

03 subU

04 and

05 or

06 xor

07 nor

12 slt

13 sltU

CS 152 L05 Performance and Design (34) Patterson Fall 2003 © UCB

Refined Requirements
(1) Functional Specification
inputs: 2 x 32-bit operands A, B, 4-bit mode
outputs: 32-bit result S, 1-bit carry, 1 bit overflow
operations: add, addu, sub, subu, and, or, xor, nor, slt, sltU

(2) Block Diagram (schematic symbol, Verilog description)

ALUALU
A B

m
ovf

S

32 32

32

4
c

CS 152 L05 Performance and Design (35) Patterson Fall 2003 © UCB

Behavioral Representation: Verilog

module ALU(A, B, m, S, c, ovf);
input [0:31] A, B;
input [0:3] m;
output [0:31] S;
output c, ovf;

reg [0:31] S;
reg c, ovf;

always @(A, B, m) begin
case (m)

0: S = A + B;

. . .

end
endmodule

CS 152 L05 Performance and Design (36) Patterson Fall 2003 © UCB

Design Decisions

°Simple bit-slice
• big combinational problem
• many little combinational problems
• partition into 2-step problem

°Bit slice with carry look-ahead
° . . .

ALU

bit slice

7-to-2 C/L 7 3-to-2 C/L

PLD Gates muxCL0 CL6

CS 152 L05 Performance and Design (37) Patterson Fall 2003 © UCB

Refined Diagram: bit-slice ALU

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0
m

cinco
s0

ALU31

a31 b31
m

cinco
s31

CS 152 L05 Performance and Design (38) Patterson Fall 2003 © UCB

7-to-2 Combinational Logic

°start turning the crank . . .
Function Inputs Outputs K-Map

M0 M1 M2 M3 A B Cin S Cout

add 0 0 0 0 0 0 0 0 00

127

CS 152 L05 Performance and Design (39) Patterson Fall 2003 © UCB

Seven plus a MUX ?
° Design trick 2: take pieces you know (or can

imagine) and try to put them together
° Design trick 3: solve part of the problem and extend

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

add

and

or

S-select

11111
01011
01101
10001
01110
10010
10100
00000

OC
o

CBA

Full Adder
(3->2 element)

CS 152 L05 Performance and Design (40) Patterson Fall 2003 © UCB

Additional operations
° A - B = A + (– B) = A + B + 1

• form two complement by invert and add one

A

B

1-bit
Full

Adder

CarryOut

M
ux

CarryIn

Result

add

and

or

S-select
invert

Set-less-than? – left as an exercise

CS 152 L05 Performance and Design (41) Patterson Fall 2003 © UCB

Revised Diagram

°LSB and MSB need to do a little extra

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0

cinco
s0

ALU0

a31 b31

cinco
s31 C/L to

produce
select,
comp,
c-in

?

CS 152 L05 Performance and Design (42) Patterson Fall 2003 © UCB

Overflow

° Examples: 7 + 3 = 10 but ...

° - 4 - 5 = - 9 but ...

2’s ComplementBinaryDecimal
0 0000
1 0001
2 0010
3 0011

0000
1111
1110
1101

Decimal
0

-1
-2
-3

4 0100
5 0101
6 0110
7 0111

1100
1011
1010
1001

-4
-5
-6
-7

1000-8

0 1 1 1

0 0 1 1+

1 0 1 0

1

1 1 0 0

1 0 1 1+

0 1 1 1

110

7
3

1

– 6

– 4
– 5

7

CS 152 L05 Performance and Design (43) Patterson Fall 2003 © UCB

Overflow Detection
° Overflow: the result is too large (or too small) to represent

properly
• Example: - 8 ≤ 4-bit binary number ≤ 7

° When adding operands with different signs, overflow cannot
occur!

° Overflow occurs when adding:
• 2 positive numbers and the sum is negative
• 2 negative numbers and the sum is positive

° On your own: Prove you can detect overflow by:
• Carry into MSB ≠ Carry out of MSB

0 1 1 1

0 0 1 1+

1 0 1 0

1

1 1 0 0

1 0 1 1+

0 1 1 1

110

7
3

1

– 6

–4
– 5

7

0

CS 152 L05 Performance and Design (44) Patterson Fall 2003 © UCB

Overflow Detection Logic
° Carry into MSB ≠ Carry out of MSB

• For a N-bit ALU: Overflow = CarryIn[N - 1] XOR CarryOut[N - 1]

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Overflow

X Y X XOR Y

0 0 0
0 1 1
1 0 1
1 1 0

CS 152 L05 Performance and Design (45) Patterson Fall 2003 © UCB

More Revised Diagram

°LSB and MSB need to do a little extra

A B

M

S

32 32

32

4

Ovflw

ALU0

a0 b0

cinco
s0

ALU0

a31 b31

cinco
s31 C/L to

produce
select,
comp,
c-in

signed-arith
and cin xor co

CS 152 L05 Performance and Design (46) Patterson Fall 2003 © UCB

Peer Instruction: Which is good design advice?

1. Wait until you know everything before you
start (“Be prepared”)

2. The best design is a one-pass, top down
process (“Plan Ahead”)

3. Start simple, measure, then optimize
(“Less is more”)

4. Don’t be biased by the components you
already know (“Start with a clean slate”)

CS 152 L05 Performance and Design (47) Patterson Fall 2003 © UCB

But What about Performance?

° Critical Path of n-bit Rippled-carry adder is n*CP of
1-bit adder

A0

B0
1-bit
ALU

Result0

CarryIn0

CarryOut0
A1

B1
1-bit
ALU

Result1

CarryIn1

CarryOut1
A2

B2
1-bit
ALU

Result2

CarryIn2

CarryOut2
A3

B3
1-bit
ALU

Result3

CarryIn3

CarryOut3

Design Trick:
Throw hardware at it

CS 152 L05 Performance and Design (48) Patterson Fall 2003 © UCB

Carry Look Ahead (Design trick: peek)
A B C-out
0 0 0 “kill”
0 1 C-in “propagate”
1 0 C-in “propagate”
1 1 1 “generate”

G = A and B
P = A xor B

A0

B0

A1

B1

A2

B2

A3

B3

S

S

S

S

G
P

G
P

G
P

G
P

C0 = Cin

C1 = G0 + C0 • P0

C2 = G1 + G0 • P1 + C0 • P0 • P1

C3 = G2 + G1 • P2 + G0 • P1 • P2 + C0 • P0 • P1 • P2

G

C4 = . . .

P

CS 152 L05 Performance and Design (49) Patterson Fall 2003 © UCB

Plumbing as Carry Lookahead Analogy

p0

c0
g0

c1

p0

c0
g0

p1
g1

c2

p0

c0
g0

p1
g1

p2
g2

p3
g3

c4
CS 152 L05 Performance and Design (50) Patterson Fall 2003 © UCB

Cascaded Carry Look-ahead (16-bit): Abstraction

C
L
A

4-bit
Adder

4-bit
Adder

4-bit
Adder

C1 = G0 + C0 • P0

C2 = G1 + G0 • P1 + C0 • P0 • P1

C3 = G2 + G1 • P2 + G0 • P1 • P2 + C0 • P0 • P1 • P2
G
P

G0
P0

C4 = . . .

C0

CS 152 L05 Performance and Design (51) Patterson Fall 2003 © UCB

2nd level Carry, Propagate as Plumbing

p0
g0

p1
g1

p2
g2

p3
g3

G0

p1

p2

p3

P0

CS 152 L05 Performance and Design (52) Patterson Fall 2003 © UCB

Design Trick: Guess (or “Precompute”)

n-bit adder n-bit adderCP(2n) = 2*CP(n)

n-bit adder n-bit addern-bit adder 1 0

Cout

CP(2n) = CP(n) + CP(mux)

Carry-select adder

CS 152 L05 Performance and Design (53) Patterson Fall 2003 © UCB

Carry Skip Adder: reduce worst case delay

4-bit Ripple Adder

A0B

S
P0P1P2P3

4-bit Ripple Adder

A4B

S
P0P1P2P3

Exercise: optimal design uses variable block sizes
Just speed up the slowest case for each block

CS 152 L05 Performance and Design (54) Patterson Fall 2003 © UCB

Additional MIPS ALU requirements

°Mult, MultU, Div, DivU (earlier lecture)
=> Need 32-bit multiply and divide,
signed and unsigned

°Sll, Srl, Sra => Need left shift, right shift,
right shift arithmetic by 0 to 31 bits

°Nor (leave as exercise to reader)
=> logical NOR or use 2 steps: (A OR B)
XOR 1111....1111

CS 152 L05 Performance and Design (55) Patterson Fall 2003 © UCB

Elements of the Design Process
° Divide and Conquer (e.g., ALU)

• Formulate a solution in terms of simpler components.
• Design each of the components (subproblems)

° Generate and Test (e.g., ALU)
• Given a collection of building blocks, look for ways of

putting them together that meets requirement

° Successive Refinement (e.g., carry lookahead)
• Solve "most" of the problem (i.e., ignore some constraints

or special cases), examine and correct shortcomings.

° Formulate High-Level Alternatives (e.g., carry select)
• Articulate many strategies to "keep in mind" while pursuing

any one approach.

° Work on the Things you Know How to Do
• The unknown will become “obvious” as you make

progress.
CS 152 L05 Performance and Design (56) Patterson Fall 2003 © UCB

Summary of the Design Process
Hierarchical Design to manage complexity

Top Down vs. Bottom Up vs. Successive Refinement

Importance of Design Representations:

Block Diagrams

Decomposition into Bit Slices

Truth Tables, K-Maps

Circuit Diagrams

Other Descriptions: state diagrams, timing diagrams, reg xfer, . . .

Optimization Criteria:

Gate Count

[Package Count]

Logic Levels

Fan-in/Fan-out
Power

top
down

bottom
up

Area
Delay

mux design
meets at TT

Cost Design timePin Out

CS 152 L05 Performance and Design (57) Patterson Fall 2003 © UCB

Peer Instruction: Match for Design Principle?
I. Composition
II. Divide and

Conquer
III. Start simple, then

optimize critical
paths

A. Design 1-bit ALU slice
before 32-bit ALU

B. Replace ripple carry
with carry lookahead

C. Use Mux to join AND,
OR gates with Adder

ABC6.
BAC5.
ACB4.
CAB3.
BCA2.
CBA1.
III.II.I.Best match

CS 152 L05 Performance and Design (58) Patterson Fall 2003 © UCB

Why should you keep a design notebook?

° Keep track of the design decisions and the reasons
behind them

• Otherwise, it will be hard to debug and/or refine the design
• Write it down so that can remember in long project:

2 weeks ->2 yrs
• Others can review notebook to see what happened

° Record insights you have on certain aspect of the
design as they come up

° Record of the different design & debug experiments
• Memory can fail when very tired

° Industry practice: learn from others mistakes

CS 152 L05 Performance and Design (59) Patterson Fall 2003 © UCB

Why do we keep it on-line?
° You need to force yourself to take notes!

• Open a window and leave an editor running while you work
1) Acts as reminder to take notes
2) Makes it easy to take notes

• 1) + 2) => will actually do it

° Take advantage of the window system’s
“cut and paste” features

° It is much easier to read your typing than your writing
° Also, paper log books have problems

• Limited capacity => end up with many books
• May not have right book with you at time vs. networked

screens
• Can use computer to search files/index files to find what

looking for

CS 152 L05 Performance and Design (60) Patterson Fall 2003 © UCB

How should you do it?
° Keep it simple

• DON’T make it so elaborate that you won’t use (fonts, layout, ...)

° Separate the entries by dates
• type “date” command in another window and cut&paste

° Start day with problems going to work on today
° Record output of simulation into log with cut&paste; add

date
• May help sort out which version of simulation did what

° Record key email with cut&paste
° Record of what works & doesn’t helps team decide what

went wrong after you left
° Index: write a one-line summary of what you did at end of

each day

CS 152 L05 Performance and Design (61) Patterson Fall 2003 © UCB

On-line Notebook Example

°Refer to the handout
“Example of On-Line Log Book” on
CS 152 home page:

~cs152/handouts/online_notebook_example.html

CS 152 L05 Performance and Design (62) Patterson Fall 2003 © UCB

1st page of On-line notebook (Index + Wed. 9/6/95)
* Index ==

Wed Sep 6 00:47:28 PDT 1995 - Created the 32-bit comparator component
Thu Sep 7 14:02:21 PDT 1995 - Tested the comparator
Mon Sep 11 12:01:45 PDT 1995 - Investigated bug found by Bart in

comp32 and fixed it
+ ==
Wed Sep 6 00:47:28 PDT 1995

Goal: Layout the schematic for a 32-bit comparator

I've layed out the schemtatics and made a symbol for the comparator.
I named it comp32. The files are

~/wv/proj1/sch/comp32.sch
~/wv/proj1/sch/comp32.sym

Wed Sep 6 02:29:22 PDT 1995
- ==

• Add 1 line index at front of log file at end of each session: date+summary
• Start with date, time of day + goal
• Make comments during day, summary of work
• End with date, time of day (and add 1 line summary at front of file)

CS 152 L05 Performance and Design (63) Patterson Fall 2003 © UCB

2nd page of On-line notebook (Thursday 9/7/95)
+ ==
Thu Sep 7 14:02:21 PDT 1995

Goal: Test the comparator component

I've written a command file to test comp32. I've placed it
in ~/wv/proj1/diagnostics/comp32.cmd.

I ran the command file in viewsim and it looks like the comparator
is working fine. I saved the output into a log file called
~/wv/proj1/diagnostics/comp32.log

Notified the rest of the group that the comparator
is done.

Thu Sep 7 16:15:32 PDT 1995
- ==

CS 152 L05 Performance and Design (64) Patterson Fall 2003 © UCB

3rd page of On-line notebook (Monday 9/11/95)
+ ==
Mon Sep 11 12:01:45 PDT 1995

Goal: Investigate bug discovered in comp32 and hopefully fix it

Bart found a bug in my comparator component. He left the following
e-mail.

From bart@simpsons.residence Sun Sep 10 01:47:02 1995
Received: by wayne.manor (NX5.67e/NX3.0S)

id AA00334; Sun, 10 Sep 95 01:47:01 -0800
Date: Wed, 10 Sep 95 01:47:01 -0800
From: Bart Simpson <bart@simpsons.residence>
To: bruce@wanye.manor, old_man@gokuraku, hojo@sanctuary
Subject: [cs152] bug in comp32
Status: R

Hey Bruce,
I think there's a bug in your comparator.
The comparator seems to think that ffffffff and fffffff7 are equal.

Can you take a look at this?
Bart

CS 152 L05 Performance and Design (65) Patterson Fall 2003 © UCB

4th page of On-line notebook (9/11/95 contd)
I verified the bug. here's a viewsim of the bug as it appeared..
(equal should be 0 instead of 1)

SIM>stepsize 10ns
SIM>v a_in A[31:0]
SIM>v b_in B[31:0]
SIM>w a_in b_in equal
SIM>a a_in ffffffff\h
SIM>a b_in fffffff7\h
SIM>sim
time = 10.0ns A_IN=FFFFFFFF\H B_IN=FFFFFFF7\H EQUAL=1
Simulation stopped at 10.0ns.

Ah. I've discovered the bug. I mislabeled the 4th net in
the comp32 schematic.

I corrected the mistake and re-checked all the other
labels, just in case.

I re-ran the old diagnostic test file and tested it against
the bug Bart found. It seems to be working fine. hopefully
there aren’t any more bugs:)

CS 152 L05 Performance and Design (66) Patterson Fall 2003 © UCB

5th page of On-line notebook (9/11/95 contd)
On second inspectation of the whole layout, I think I can
remove one level of gates in the design and make it go faster.
But who cares! the comparator is not in the critical path
right now. the delay through the ALU is dominating the critical
path. so unless the ALU gets a lot faster, we can live with
a less than optimal comparator.

I e-mailed the group that the bug has been fixed

Mon Sep 11 14:03:41 PDT 1995
- ==

• Perhaps later critical path changes;
• What was idea to make comparator faster?
• Check on-line notebook!

CS 152 L05 Performance and Design (67) Patterson Fall 2003 © UCB

Added benefit: cool post-design statistics
Sample graph from the Alewife project:

• For the Communications and
Memory Management Unit (CMMU)

• These statistics came from
on-line record of bugs

CS 152 L05 Performance and Design (68) Patterson Fall 2003 © UCB

Lecture Summary
° An Overview of the Design Process

• Design is an iterative process, multiple approaches to get started
• Do NOT wait until you know everything before you start

° Example: Instruction Set drives the ALU design
• Divide and Conquer
• Take pieces you know and put them together
• Start with a partial solution and extend

° Optimization: Start simple and analyze critical path
• For adder: the carry is the slowest element
• Logarithmic trees to flatten linear computation
• Precompute: Double hardware and postpone slow decision

° On-line Design Notebook
• Open a window and keep an editor running while you work;cut&paste
• Refer to the handout as an example
• Former CS 152 students (and TAs) say they use on-line notebook for

programming as well as hardware design; one of most valuable skills

