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Performance Review
°Latency v. Throughput
°Performance doesn’t depend on any 
single factor: need to know Instruction 
Count, Clocks Per Instruction and Clock 
Rate to get valid estimations

°2 Definitions of times:
• User Time: time user needs to wait for 
program to execute (multitasking affects)

• CPU Time: time spent executing a single 
program: (no multitasking)

°Amdahl’s Law: law of diminishing returns
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Design Process Review
° Divide and Conquer (e.g., ALU)

• Formulate  a solution in terms of simpler components.
• Design each of the components (subproblems)

° Generate and Test (e.g., ALU)
• Given a collection of building blocks, look for ways of 

putting them together that meets requirement

° Successive Refinement
• Solve "most" of the problem (i.e., ignore some constraints 

or special cases), examine and correct shortcomings.

° Formulate High-Level Alternatives
• Articulate many strategies to "keep in mind" while pursuing 

any one approach.

° Work on the Things you Know How to Do
• The unknown will become “obvious” as you make 

progress.
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Outline
°Single Cycle Datapath

• 5 steps 
• Performance?

( Instruction Count x CPI x Clock Cycle Time )

°Online Notebook
• Capturing design and implementation 
process, decisions so that can understand 
evolution of design, fix bugs
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How to Design a Processor: step-by-step
° 1. Analyze instruction set => datapath requirements

• the meaning of each instruction is given by the register transfers
• datapath must include storage element for ISA registers

- possibly more
• datapath must support each register transfer

° 2. Select set of datapath components and establish 
clocking methodology

° 3. Assemble datapath meeting the requirements
° 4. Analyze implementation of each instruction to 

determine setting of control points that effects the 
register transfer.

° 5. Assemble the control logic
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The MIPS Instruction Formats
° All MIPS instructions are 32 bits long.  The three  instruction 

formats:

• R-type

• I-type

• J-type

° The different fields are:
• op: operation of the instruction
• rs, rt, rd: the source and destination register specifiers
• shamt: shift amount
• funct: selects the variant of the operation in the “op” field
• address / immediate: address offset or immediate value
• target address: target address of the jump instruction 

op target address
02631

6 bits 26 bits

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits
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Step 1a: The MIPS-lite Subset for today

° ADD and SUB
• addU rd, rs, rt
• subU rd, rs, rt

° OR Immediate:
• ori  rt, rs, imm16

° LOAD and STORE Word
• lw rt, rs, imm16
• sw rt, rs, imm16

° BRANCH:
• beq rs, rt, imm16

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits
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Using Hardware Description Lang. 
° All start by fetching the instruction

op | rs | rt | rd | shamt | funct <= MEM[ PC ]

op | rs | rt |   Imm16                <= MEM[ PC ]

inst HDL description

ADDU R[rd] <= R[rs] + R[rt]; PC <= PC + 4

SUBU R[rd] <= R[rs] – R[rt]; PC <= PC + 4

ORi R[rt] <= R[rs] | zero_ext(Imm16); PC <= PC + 4

LOAD R[rt] <= MEM[ R[rs] + sign_ext(Imm16)]; PC <= PC + 4

STORE MEM[ R[rs] + sign_ext(Imm16) ] <= R[rt];PC <= PC + 4

BEQ if ( R[rs] == R[rt] ) PC <= PC + 4 +
{sign_ext(Imm16)], 2b00 }

else PC <= PC + 4
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Step 1: Requirements of the Instruction Set
° Memory

• One for instructions, one for data

° Registers (32 x 32bit)
• read RS

• read RT

• Write RT or RD

° PC
° Sign Extender (for immediate field)
° Add and Sub register or extended immediate
° Add 4 or extended immediate to PC
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Step 2: Components of the Datapath

°Combinational Logic Elements
°Storage Elements

• Clocking methodology
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Combinational Logic Elements (Basic Building Blocks)

°Adder

°MUX

°ALU
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B
32 Sum

Carry

32

32
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B
32 Result

OP

32A

B 32

Y32

Select
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dder

M
U

X
A

L
U

CarryIn
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Storage Element: Register (Basic Building Block)

°Register
•Similar to the D Flip Flop 
except

- N-bit input and output
- Write Enable input

•Write Enable:
- negated  (0): Data Out will 

not change
- asserted (1): Data Out will 

become Data In

Clk

Data In

Write Enable

N N
Data Out
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Storage Element: Register File
° Register File consists of 32 registers:

• Two 32-bit output busses:
busA and busB

• One 32-bit input bus: busW

° Register is selected by:
• RA (number) selects the register to put on busA (data)
• RB (number) selects the register to put on busB (data)
• RW (number) selects the register to be  written

via busW (data) when Write Enable is 1

° Clock input (CLK) 
• The CLK input is a factor ONLY during write operation
• During read operation, behaves as a combinational logic block:

- RA or RB valid => busA or busB valid after “access time.”

Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RWRA RB

32 32-bit
Registers
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Storage Element: Idealized Memory

° Memory (idealized)
• One input bus: Data In
• One output bus: Data Out

° Memory word is selected by:
• Address selects the word to put on Data Out
• Write Enable = 1: address selects the memory

word to be written via the Data In bus

° Clock input (CLK) 
• The CLK input is a factor ONLY during write operation
• During read operation, behaves  as a combinational logic 

block:
- Address valid => Data Out valid after “access time.”

Clk

Data In

Write Enable

32 32
DataOut

Address
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Administrivia

°Lab #2 Due Monday 9/15 before midnight
• Demo during Friday discussion in 119 Cory
• If not done Friday, schedule demo with TA 
after deadline

°Form 4 or 5 person teams by Friday 9/12
• Who have full teams? Needs teammates?

°Office hours in Lab
• Mon 4 – 5:30 Jack, Mon 3 – 4:30 John

°Dave’s office hours Tue 3:30 – 5
°Reading: Sections 5.1 to 5.4 in Beta ed.
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Clocking Methodology

° All storage elements are clocked by the same clock edge
° Cycle Time = CLK-to-Q + Longest Delay Path + Setup + Clock 

Skew
° (CLK-to-Q + Shortest Delay Path - Clock Skew)  >  Hold Time

Clk

Don’t Care
Setup Hold

.

.

.

.

.

.

.

.

.

.

.

.

Setup Hold
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Step 3: Assemble Datapath meeting our requirements

°HDL Requirements
⇒ Datapath Assembly

° Instruction Fetch
°Read Operands and Execute Operation
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3a: Overview of the Instruction Fetch Unit
° The common operations

• Fetch the Instruction: mem[PC]
• Update the program counter:

- Sequential Code: PC <= PC + 4 
- Branch and Jump:   PC <= “something else”

32

Instruction Word
Address

Instruction
Memory

PCClk

Next Address
Logic
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3b: Add & Subtract
° R[rd] <= R[rs] op R[rt] 

Example: addU    rd, rs, rt
• Ra, Rb, and Rw come from instruction’s rs, rt, and rd fields
• ALUctr and RegWr: control logic after decoding the 

instruction             

32
Result

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb

32  32-bit
Registers

Rs RtRd

A
L

U

op rs rt rd shamt funct
061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits
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Register-Register Timing: One complete cycle
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Register Write
Occurs Here
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3c: Logical Operations with Immediate
° R[rt] <= R[rs] op ZeroExt[imm16] ] 

32

Result

ALUctr
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busB

5 5 5

Rw Ra Rb
32 32-bit
Registers
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Z
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xt

M
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3216
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U

11
op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits rd?

immediate
016 1531

16 bits16 bits
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rt?

Additions 
to prior 
Data-
path
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3d: Load Operations
° R[rt] <= Mem[R[rs] + SignExt[imm16]] 

Example: lw    rt, rs, imm16
11

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits rd

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs

RtRd
RegDst

E
xtender

M
ux

Mux

32
16

imm16

ALUSrc

ExtOp

Clk

Data In
WrEn

32

Adr

Data
Memory

32

A
L

U

MemWr M
ux

W_Src

??

Rt?

CS 152 L06 Single Cycle 1 (23) Patterson Fall 2003 © UCB

3e: Store Operations
° Mem[ R[rs] + SignExt[imm16] <= R[rt] ] 

Example: sw    rt, rs, imm16
op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

32
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busW
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32
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32
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55 5
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3f: The Branch Instruction

° beq rs, rt, imm16

• mem[PC] Fetch the instruction from memory

• Equal <= (R[rs] == R[rt]) Calculate the branch condition

• if (Equal) Calculate the next instruction’s address
- PC  <=  PC + 4 + { SignExt(imm16) , 2b00 }

• else
- PC  <=  PC + 4

op rs rt immediate
016212631

6 bits 16 bits5 bits5 bits
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Datapath for Branch Operations
° beq    rs, rt, imm16

Datapath generates condition (equal)
op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

32

imm16

PC

Clk

00

A
dder

M
ux

A
dder

4
PCSrc

Clk

busW

RegWr

32

busA

32
busB

5 5 5

Rw Ra Rb
32  32-bit
Registers

Rs Rt

E
qu

al
?

Cond

PC
 E

xt

Inst Address
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Putting it All Together: A Single Cycle Datapath

im
m

16

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs

Rt

Rt

Rd
RegDst

E
xtender

M
ux

3216
imm16

ALUSrcExtOp

M
ux

MemtoReg

Clk

Data In
WrEn32 Adr

Data
Memory

MemWr

A
L

U

Equal

Instruction<31:0>

0

1

0

1

01

<21:25>

<16:20>

<11:15>

<0:15>

Imm16RdRtRs

=

A
dder

A
dder

PC
Clk

00M
ux

4

PCSrc

PC
 E

xt

Adr

Inst
Memory

CS 152 L06 Single Cycle 1 (27) Patterson Fall 2003 © UCB

Lectures vs. Chapter 5 Beta 3/e
Lectures
° MIPS-lite subset:

• AddU, SubU, LW, SW
• BEQ, ORI

° Control lines names
• MemtoReg, PCSrc, 

ALUSrc, RegDst
• MemWr, RegWr
• ExtOp (zero extend or 

sign extend)
• ALUctr 3 bits (no NOR)
• MemWr=0 => MemRead

Book
° MIPS-lite subset:

• AddU, SubU, LW, SW
• BEQ, OR
• AND, SLT, J

° Control lines names
• MemtoReg, PCSrc, 

ALUSrc, RegDst
• MemWrite, RegWrite
• No ExtOp since subset 

immediates sign extend
• ALUoperation 4 bits
• MemRead & MemWrite 
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An Abstract View of the Implementation
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Steps 4 & 5: Implement the control

Next Time!
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A. PC’s Clk-to-Q
B. Instruction Memory’s Access Time
C. Register File’s Access Time
D. ALU to Perform a 32-bit Operation
E. PC Adder1 adds 4 to PC
F. PC Ext sign extends immediate
G. PC Adder2 adds imm to Adder1 sum
H. Data Memory Access Time
I. Setup Time for PC
J. Setup Time for Register File Write
K. Clock Skew

Peer Instruction: What is critical path for BEQ?

im
m
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32
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55 5
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1. A, B, C, D, I, K 
2. A, B, C, D, G, I, K
3. A, B, C, D, E, F, G, I, J, K
4. A, B, C, D, E, F, G, H, I, J, K 
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A. PC’s Clk-to-Q
B. Instruction Memory’s Access Time
C. Register File’s Access Time
D. ALU to Perform a 32-bit Operation
E. PC Adder1 adds 4 to PC
F. PC Ext sign extends immediate
G. PC Adder2 adds imm to Adder1 sum
H. Data Memory Access Time
I. Setup Time for PC
J. Setup Time for Register File Write
K. Clock Skew

Peer Instruction: What is critical path for LW?
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1. A, B, C, D, H, J, K 
2. A, B, C, D, H, I, J, K
3. A, B, C, D, E, H, I, J, K
4. A, B, C, D, E, F, G, H, I, J, K 
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A. PC’s Clk-to-Q
B. Instruction Memory’s Access Time
C. Register File’s Access Time
D. ALU to Perform a 32-bit Operation
E. PC Adder1 adds 4 to PC
F. PC Ext sign extends immediate
G. PC Adder2 adds imm to Adder1 sum
H. Data Memory Access Time
I. Setup Time for PC
J. Setup Time for Register File Write
K. Clock Skew

Peer Instruction: Which has longest critical path?
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Why should you keep a design notebook?

° Keep track of the design decisions and the reasons 
behind them

• Otherwise, it will be hard to debug and/or refine the design
• Write it down so that can remember in long project: 

2 weeks ->2 yrs
• Others can review notebook to see what happened

° Record insights you have on certain aspect of the 
design as they come up

° Record of the different design & debug experiments
• Memory can fail when very tired

° Industry practice: learn from others mistakes
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Why do we keep it on-line?
° You need to force yourself to take notes!

• Open a window and leave an editor running while you work
1) Acts as reminder to take notes
2) Makes it easy to take notes

• 1) + 2) => will actually do it

° Take advantage of the window system’s 
“cut and paste” features

° It is much easier to read your typing than your writing
° Also, paper log books have problems

• Limited capacity => end up with many books
• May not have right book with you at time vs. networked 

screens
• Can use computer to search files/index files to find what 

looking for
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How should you do it?
° Keep it simple

• DON’T make it so elaborate that you won’t use (fonts, layout, ...)

° Separate the entries by dates
• type “date” command in another window and cut&paste

° Start day with problems going to work on today
° Record output of simulation into log with cut&paste; add 

date
• May help sort out which version of simulation did what

° Record key email with cut&paste
° Record of what works & doesn’t helps team decide what 

went wrong after you left
° Index: write a one-line summary of what you did at end of 

each day
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On-line Notebook Example

°Refer to the handout 
“Example of On-Line Log Book” on 
CS 152 home page:

~cs152/handouts/online_notebook_example.html
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1st page of On-line notebook (Index + Wed. 9/6/95)
* Index ==============================================================

Wed Sep  6 00:47:28 PDT 1995 - Created the 32-bit comparator component
Thu Sep  7 14:02:21 PDT 1995 - Tested the comparator
Mon Sep 11 12:01:45 PDT 1995 - Investigated bug found by Bart in 

comp32 and fixed it
+ ====================================================================
Wed Sep  6 00:47:28 PDT 1995

Goal: Layout the schematic for a 32-bit comparator

I've layed out the schemtatics and made a symbol for the comparator.
I named it comp32.  The files are

~/wv/proj1/sch/comp32.sch    
~/wv/proj1/sch/comp32.sym

Wed Sep  6 02:29:22 PDT 1995
- ====================================================================

• Add 1 line index at front of log file at end of each session: date+summary
• Start with date, time of day + goal
• Make comments during day, summary of work
• End with date, time of day (and add 1 line summary at front of file)
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2nd page of On-line notebook (Thursday 9/7/95)
+ ====================================================================
Thu Sep  7 14:02:21 PDT 1995

Goal: Test the comparator component

I've written a command file to test comp32.  I've placed it 
in ~/wv/proj1/diagnostics/comp32.cmd.  

I ran the command file in viewsim and it looks like the comparator 
is working fine.  I saved the output into a log file called
~/wv/proj1/diagnostics/comp32.log

Notified the rest of the group that the comparator
is done.

Thu Sep  7 16:15:32 PDT 1995
- ====================================================================
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3rd page of On-line notebook (Monday 9/11/95)
+ ====================================================================
Mon Sep 11 12:01:45 PDT 1995

Goal: Investigate bug discovered in comp32 and hopefully fix it

Bart found a bug in my comparator component. He left the following
e-mail.

-------------------
From bart@simpsons.residence Sun Sep 10 01:47:02 1995
Received: by wayne.manor (NX5.67e/NX3.0S)

id AA00334; Sun, 10 Sep 95 01:47:01 -0800
Date: Wed, 10 Sep 95 01:47:01 -0800
From: Bart Simpson <bart@simpsons.residence>
To: bruce@wanye.manor, old_man@gokuraku, hojo@sanctuary
Subject: [cs152] bug in comp32
Status: R

Hey Bruce,
I think there's a bug in your comparator. 
The comparator seems to think that ffffffff and fffffff7 are equal.

Can you take a look at this?
Bart
----------------
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4th page of On-line notebook (9/11/95 contd)
I verified the bug. here's a viewsim of the bug as it appeared..
(equal should be 0 instead of 1)

------------------
SIM>stepsize 10ns
SIM>v a_in A[31:0]
SIM>v b_in B[31:0]
SIM>w a_in b_in equal
SIM>a a_in ffffffff\h
SIM>a b_in fffffff7\h
SIM>sim
time =    10.0ns  A_IN=FFFFFFFF\H B_IN=FFFFFFF7\H EQUAL=1 
Simulation stopped at 10.0ns.
-------------------

Ah. I've discovered the bug. I mislabeled the 4th net in
the comp32 schematic.  

I corrected the mistake and re-checked all the other
labels, just in case.

I re-ran the old diagnostic test file and tested it against
the bug Bart found.  It seems to be working fine. hopefully
there aren’t any more bugs:)
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5th page of On-line notebook (9/11/95 contd)
On second inspectation of the whole layout, I think I can
remove one level of gates in the design and make it go faster.
But who cares! the comparator is not in the critical path
right now. the delay through the ALU is dominating the critical
path.  so unless the ALU gets a lot faster, we can live with 
a less than optimal comparator.

I e-mailed the group that the bug has been fixed

Mon Sep 11 14:03:41 PDT 1995
- ====================================================================

• Perhaps later critical path changes; 
• What was idea to make comparator faster? 
• Check on-line notebook!
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Added benefit: cool post-design statistics
Sample graph from the Alewife project:

• For the Communications and
Memory Management Unit (CMMU)

• These statistics came from
on-line record of bugs
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Lecture Summary
° 5 steps to design a processor

1. Analyze instruction set => datapath requirements
2. Select set of datapath components & establish clock methodology
3. Assemble datapath meeting the requirements
4. Analyze implementation of each instruction to determine setting of control 

points that effects the register transfer.
5. Assemble the control logic (Next Lecture)

° MIPS makes it easier
• Instructions same size; Source registers, immediates always in same place
• Operations always on registers/immediates

° Single cycle datapath => CPI=1, CCT => long
° On-line Design Notebook

• Open a window and keep an editor running while you work;cut&paste
• Former CS 152 students (and TAs) say they use on-line notebook 

for     programming as well as hardware design; one of most valuable 
skills

Refer to the handout as an example


