
1

CS 152 L09 Multicycle (1) Patterson Fall 2003 © UCB

CS152 – Computer Architecture and
Engineering

Lecture 9 – Multicycle Design
2003-09-22

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

CS 152 L09 Multicycle (2) Patterson Fall 2003 © UCB

Review
• Synchronous circuit: from clock edge to clock

edge, just define what happens in between;
Flip flop defined to handle conditions

• Combinational logic has no clock
• Always statements create latches if you don’t

specify all output for all conditions
• Verilog does not turn hardware design into

writing programs; describe your HW design
• Control implementation: turn truth tables into

logic equations

CS 152 L09 Multicycle (3) Patterson Fall 2003 © UCB

Recap: Processor Design is a Process
• Bottom-up

– assemble components in target technology to establish critical
timing

• Top-down
– specify component behavior from high-level requirements

• Iterative refinement
– establish partial solution, expand and improve

datapath control

processorInstruction Set
Architecture

⇒

Reg. File Mux ALU Reg Mem Decoder Sequencer

Cells Gates

CS 152 L09 Multicycle (4) Patterson Fall 2003 © UCB

Abstract View of our single cycle processor

• looks like a FSM with PC as state

P
C

N
ex

t P
C

R
eg

is
te

r
Fe

tc
h ALU

R
eg

.
W

rt

M
em

A
cc

es
s

D
at

a
M

em

In
st

ru
ct

io
n

Fe
tc

h

R
es

ul
t S

to
re

AL
U

ct
r

R
eg

D
st

AL
U

Sr
c

Ex
tO

p

M
em

W
r

Eq
ua

l

nP
C

_s
el

R
eg

W
r

M
em

W
r

M
em

R
d

Main
Control

ALU
control

op

fun

E
xt

CS 152 L09 Multicycle (5) Patterson Fall 2003 © UCB

What’s wrong with our CPI=1 processor?

• Long Cycle Time
• All instructions take as much time as the slowest
• Real memory is not as nice as our idealized

memory
– cannot always get the job done in one (short) cycle

PC Inst Memory mux ALU Data Mem mux

PC Reg FileInst Memory mux ALU mux

PC Inst Memory mux ALU Data Mem

PC Inst Memory cmp mux

Reg File

Reg File

Reg File

Arithmetic & Logical

Load

Store

Branch

Critical Path

setup

setup

CS 152 L09 Multicycle (6) Patterson Fall 2003 © UCB

Memory Access Time
• Physics => fast memories are small (large memories are slow)

• => Use a hierarchy of memories

Storage Array

selected word line

address
storage cell

bit line

sense amps

address
decoder

CacheProcessor

1 time-period

pr
oc

. b
us

L2
Cache

m
em

. b
us

2-3 time-periods
20 - 50 time-periods

memory

2

CS 152 L09 Multicycle (7) Patterson Fall 2003 © UCB

Reducing Cycle Time
• Cut combinational dependency graph and insert register / latch

• Do same work in two fast cycles, rather than one slow one

• May be able to short-circuit path and remove some components for
some instructions!

storage element

Acyclic
Combinational
Logic

storage element

storage element

Acyclic
Combinational
Logic (A)

storage element

storage element

Acyclic
Combinational
Logic (B)

⇒

CS 152 L09 Multicycle (8) Patterson Fall 2003 © UCB

Worst Case Timing (Load)
Clk

PC

Rs, Rt, Rd,
Op, Func

Clk-to-Q

ALUctr

Instruction Memoey Access Time

Old Value New Value

RegWr Old Value New Value

Delay through Control Logic

busA

Register File Access Time

Old Value New Value

busB

ALU Delay

Old Value New Value

Old Value New Value

New ValueOld Value

ExtOp Old Value New Value

ALUSrc Old Value New Value

MemtoReg Old Value New Value

Address Old Value New Value

busW Old Value New

Delay through Extender & Mux

Register
Write Occurs

Data Memory Access Time

CS 152 L09 Multicycle (9) Patterson Fall 2003 © UCB

Basic Limits on Cycle Time
• Next address logic

– PC <= branch ? PC + offset : PC + 4

• Instruction Fetch
– InstructionReg <= Mem[PC]

• Register Access
– A <= R[rs]

• ALU operation
– R <= A + B

P
C

N
ex

t P
C

O
pe

ra
nd

Fe
tc

h Exec

R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

In
st

ru
ct

io
n

Fe
tc

h

R
es

ul
t S

to
re

AL
U

ct
r

R
eg

D
st

AL
U

Sr
c

Ex
tO

p

M
em

W
r

nP
C

_s
el

R
eg

W
r

M
em

W
r

M
em

R
d

Control

CS 152 L09 Multicycle (10) Patterson Fall 2003 © UCB

Partitioning the CPI=1 Datapath
• Add registers between smallest steps

• Place enables on all registers

P
C

N
ex

t P
C

O
pe

ra
nd

Fe
tc

h Exec

R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

In
st

ru
ct

io
n

Fe
tc

h

R
es

ul
t S

to
re

AL
U

ct
r

R
eg

D
st

AL
U

Sr
c

Ex
tO

p

M
em

W
r

nP
C

_s
el

R
eg

W
r

M
em

W
r

M
em

R
d

E
qu

al

CS 152 L09 Multicycle (11) Patterson Fall 2003 © UCB

Example Multicycle Datapath

• Critical Path ?

P
C

N
ex

t P
C

O
pe

ra
nd

Fe
tc

h

In
st

ru
ct

io
n

Fe
tc

h

nP
C

_s
el

IR

Reg
File E

xt
A

LU R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

R
es

ul
t S

to
re

R
eg

D
st

R
eg

W
r

M
em

W
r

M
em

R
d

S

M

M
em

To
R

eg

E
qu

al

AL
U

ct
r

AL
U

Sr
c

Ex
tO

p

A

B

E

CS 152 L09 Multicycle (12) Patterson Fall 2003 © UCB

Administrivia

• Office hours in Lab
– Mon 4 – 5:30 Jack, Tue 3:30-5 Kurt,

Wed 3 – 4:30 John, Thu 3:30-5 Ben
• Dave’s office hours Tue 3:30 – 5
• Lab 3 demo Friday, due Monday
• Midterm I Wednesday Oct 8 5:30 - 8:30pm

3

CS 152 L09 Multicycle (13) Patterson Fall 2003 © UCB

Recall: Step-by-step Processor Design

Step 1: ISA => Logical Register Transfers

Step 2: Components of the Datapath

Step 3: RTL + Components => Datapath

Step 4: Datapath + Logical RTs => Physical
RTs

Step 5: Physical RTs => Control

CS 152 L09 Multicycle (14) Patterson Fall 2003 © UCB

Step 4: R-rtype (add, sub, . . .)
• Logical Register Transfer

• Physical Register Transfers

inst Logical Register Transfers

ADDU R[rd] <= R[rs] + R[rt]; PC <= PC + 4

inst Physical Register Transfers
IR <= MEM[pc]

ADDU A<= R[rs]; B <= R[rt]
S <= A + B
R[rd] <= S; PC <= PC + 4

E
xe

c

R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

S

M

R
eg

Fi
le

P
C

N
ex

t P
C

IR

In
st

. M
em

Ti
m

e

A

B

E

CS 152 L09 Multicycle (15) Patterson Fall 2003 © UCB

Step 4: Logical immed
• Logical Register Transfer

• Physical Register Transfers

inst Logical Register Transfers

ORI R[rt] <= R[rs] OR ZExt(Im16); PC <= PC + 4

inst Physical Register Transfers
IR <= MEM[pc]

ORI A<= R[rs]; B <= R[rt]
S <= A or ZExt(Im16)
R[rt] <= S; PC <= PC + 4

E
xe

c

R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

S

M

R
eg

Fi
le

P
C

N
ex

t P
C

IR

In
st

. M
em

Ti
m

e

A

B

E

CS 152 L09 Multicycle (16) Patterson Fall 2003 © UCB

Step 4 : Load
• Logical Register Transfer

• Physical Register Transfers

inst Logical Register Transfers

LW R[rt] <= MEM[R[rs] + SExt(Im16)];

PC <= PC + 4

inst Physical Register Transfers
IR <= MEM[pc]

LW A<= R[rs]; B <= R[rt]
S <= A + SExt(Im16)
M <= MEM[S]
R[rd] <= M; PC <= PC + 4

E
xe

c

R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

S

M

R
eg

Fi
le

P
C

N
ex

t P
C

IR

In
st

. M
em

A

B

E
Ti

m
e

CS 152 L09 Multicycle (17) Patterson Fall 2003 © UCB

Step 4 : Store
• Logical Register Transfer

• Physical Register Transfers

inst Logical Register Transfers

SW MEM[R[rs] + SExt(Im16)] <= R[rt];

PC <= PC + 4

inst Physical Register Transfers
IR <= MEM[pc]

SW A<= R[rs]; B <= R[rt]
S <= A + SExt(Im16);
MEM[S] <= B PC <= PC + 4

E
xe

c

R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

S

M

R
eg

Fi
le

P
C

N
ex

t P
C

IR

In
st

. M
em

A

B

E

Ti
m

e

CS 152 L09 Multicycle (18) Patterson Fall 2003 © UCB

Step 4 : Branch
• Logical Register Transfer

• Physical Register Transfers

inst Logical Register Transfers

BEQ if R[rs] == R[rt]

then PC <= PC + 4+SExt(Im16) || 00

else PC <= PC + 4

E
xe

c

R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

S

M

R
eg

Fi
le

P
C

N
ex

t P
C

IR

In
st

. M
em

inst Physical Register Transfers
IR <= MEM[pc]

BEQ E<= (R[rs] = R[rt])
if (!E) PC <= PC + 4;

else PC <=PC+4+{SExt(Im16),2b0}

A

B

E

Ti
m

e

4

CS 152 L09 Multicycle (19) Patterson Fall 2003 © UCB

Alternative datapath (book): Multiple Cycle Datapath

• Minimizes Hardware: 1 memory, 1 adder

Ideal
Memory

WrAdr

Din

RAdr

32

32

32

Dout

MemWr

32

A
LU

32

32

ALUOp

ALU
Control

Instruction R
eg

32

IRWr

32

Reg File

Ra

Rw

busW

Rb

5

5

32

busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2

3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

Target
32

Zero

Zero
PCWrCond PCSrc BrWr

32

IorD

A
LU

 O
ut

CS 152 L09 Multicycle (20) Patterson Fall 2003 © UCB

Our Control Model
• State specifies control points for Register Transfer
• Transfer occurs upon exiting state (same clock edge)

Control State

Next State
Logic

Output Logic

inputs (conditions)

outputs (control points)

State X

Register Transfer
Control Points

Depends on Input

CS 152 L09 Multicycle (21) Patterson Fall 2003 © UCB

Step 4 ⇒ Control Spec for multicycle proc
IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B
PC <= PC + 4

BEQ
PC <=
Next(PC,Equal)

SW

“instruction fetch”

“decode / operand fetch”

Ex
ec

ut
e

M
em

or
y

W
rit

e-
ba

ck

CS 152 L09 Multicycle (22) Patterson Fall 2003 © UCB

Traditional FSM Controller

State

6

4

11

next
State

op

Equal

control points

state op cond

next
state control points

Truth Table

datapath State

CS 152 L09 Multicycle (23) Patterson Fall 2003 © UCB

Step 5 ⇒ (datapath + state diagram ⇒ control)

• Translate RTs into control points
• Assign states

• Then go build the controller

CS 152 L09 Multicycle (24) Patterson Fall 2003 © UCB

Mapping Register Transfers to Control Points
IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B
PC <= PC + 4

BEQ

PC <=
Next(PC,Equal)

SW

“instruction fetch”

“decode”

imem_rd, IRen

ALUfun, Sen

RegDst,
RegWr,
PCen

Aen, Ben,
Een

Ex
ec

ut
e

M
em

or
y

W
rit

e-
ba

ck

5

CS 152 L09 Multicycle (25) Patterson Fall 2003 © UCB

Assigning States
IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B
PC <= PC + 4

BEQ

PC <= Next(PC)

SW

“instruction fetch”

“decode”

0000

0001

0100

0101

0110

0111

1000

1001

1010

00111011

1100

Ex
ec

ut
e

M
em

or
y

W
rit

e-
ba

ck

CS 152 L09 Multicycle (26) Patterson Fall 2003 © UCB

(Mostly) Detailed Control Specs (missing⇒0)

0000 ??????? 0001 1
0001 BEQ x 0011 1 1 1
0001 R-type x 0100 1 1 1
0001 ORI x 0110 1 1 1
0001 LW x 1000 1 1 1
0001 SW x 1011 1 1 1

0011 xxxxxx 0 0000 1 0 x 0 x
0011 xxxxxx 1 0000 1 1 x 0 x
0100 xxxxxx x 0101 0 1 fun 1
0101 xxxxxx x 0000 1 0 0 1 1
0110 xxxxxx x 0111 0 0 or 1
0111 xxxxxx x 0000 1 0 0 1 0
1000 xxxxxx x 1001 1 0 add 1
1001 xxxxxx x 1010 1 0 1
1010 xxxxxx x 0000 1 0 1 1 0
1011 xxxxxx x 1100 1 0 add 1
1100 xxxxxx x 0000 1 0 0 1 0

State Op field Eq Next IR PC Ops Exec Mem Write-Back
en sel A B E Ex Sr ALU S R W M M-R Wr Dst

R:

ORi:

LW:

SW:

-all same in Moore machine

BEQ:

CS 152 L09 Multicycle (27) Patterson Fall 2003 © UCB

Performance Evaluation

• What is the average CPI?
– state diagram gives CPI for each instruction type
– workload gives frequency of each type

Type CPIi for type Frequency CPIi x freqIi
Arith/Logic 4 40% 1.6

Load 5 30% 1.5

Store 4 10% 0.4

branch 3 20% 0.6

Average CPI: 4.1

CS 152 L09 Multicycle (28) Patterson Fall 2003 © UCB

Controller Design
• The state diagrams that arise define the controller for an

instruction set processor are highly structured
• Use this structure to construct a simple “microsequencer”
• Control reduces to programming this very simple device

⇒ microprogramming

sequencer
control

datapath control

micro-PC
sequencer

microinstruction

CS 152 L09 Multicycle (29) Patterson Fall 2003 © UCB

Example: Jump-Counter

op-code

Map ROM

Counter

zero
inc
load

0000
i

i+1

i

None of above: Do nothing
(for wait states)

CS 152 L09 Multicycle (30) Patterson Fall 2003 © UCB

Using a Jump Counter
IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B
PC <= PC + 4

BEQ

PC <= Next(PC)

SW

“instruction fetch”

“decode”

0000

0001

0100

0101

0110

0111

1000

1001

1010

00111011

1100

inc

load

zero zero
zero

zero

zero
inc inc inc inc

inc

Ex
ec

ut
e

M
em

or
y

W
rit

e-
ba

ck

6

CS 152 L09 Multicycle (31) Patterson Fall 2003 © UCB

Our Microsequencer

op-code

Map ROM

Micro-PC

Z I L
datapath control

taken

CS 152 L09 Multicycle (32) Patterson Fall 2003 © UCB

Microprogram Control Specification

0000 ? inc 1
0001 0 load 1 1

0011 0 zero 1 0
0011 1 zero 1 1
0100 x inc 0 1 fun 1
0101 x zero 1 0 0 1 1
0110 x inc 0 0 or 1
0111 x zero 1 0 0 1 0
1000 x inc 1 0 add 1
1001 x inc 1 0 1
1010 x zero 1 0 1 1 0
1011 x inc 1 0 add 1
1100 x zero 1 0 0 1 0

µPC Taken Next IR PC Ops Exec Mem Write-Back
en sel A B Ex Sr ALU S R W M M-R Wr Dst

R:

ORi:

LW:

SW:

BEQ

CS 152 L09 Multicycle (33) Patterson Fall 2003 © UCB

Adding the Dispatch ROM

•Sequencer-based control
– Called “microPC” or “µPC” vs. state register

Control Value Effect
00 Next µaddress = 0
01 Next µaddress = dispatch ROM
10 Next µaddress = µaddress + 1

ROM:

Opcode

microPC

1

µAddress
Select
Logic

Adder

ROM

Mux

0
012

R-type 000000 0100
BEQ 000100 0011
ori 001101 0110
LW 100011 1000
SW 101011 1011

CS 152 L09 Multicycle (34) Patterson Fall 2003 © UCB

Example: Controlling Memory

PC

Instruction
Memory

Inst. Reg

addr

data

IR_en

InstMem_rd

IM_wait

CS 152 L09 Multicycle (35) Patterson Fall 2003 © UCB

Controller handles non-ideal memory
IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B

BEQ
PC <=

Next(PC)

SW

“instruction fetch”

“decode / operand fetch”

Ex
ec

ut
e

M
em

or
y

W
rit

e-
ba

ck

~wait wait

~wait wait

PC <= PC + 4

~wait wait

CS 152 L09 Multicycle (36) Patterson Fall 2003 © UCB

sequencer
control

micro-PC
µ-sequencer:
fetch,dispatch,
sequential

Dispatch
ROM

Opcode

Inputs

Microprogramming

• Microprogramming is a fundamental concept
– implement an instruction set by building a very simple processor

and interpreting the instructions
– essential for very complex instructions and when few register

transfers are possible
– overkill when ISA matches datapath 1-1

µ-Code ROM

To DataPath

DecodeDecode

datapath control

microinstruction (µ)

7

CS 152 L09 Multicycle (37) Patterson Fall 2003 © UCB

Microprogramming
• Microprogramming is a convenient method for

implementing structured control state diagrams:
– Random logic replaced by microPC sequencer and ROM
– Each line of ROM called a µinstruction:

contains sequencer control + values for control points
– limited state transitions:

branch to zero, next sequential,
branch to µinstruction address from displatch ROM

• Horizontal µCode: one control bit in µInstruction for
every control line in datapath

• Vertical µCode: groups of control-lines coded together
in µInstruction (e.g. possible ALU dest)

• Control design reduces to Microprogramming
– Part of the design process is to develop a “language” that

describes control and is easy for humans to understand

CS 152 L09 Multicycle (38) Patterson Fall 2003 © UCB

“Macroinstruction” Interpretation

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

this can change!

AND microsequence

e.g., Fetch
Calc Operand Addr
Fetch Operand(s)
Calculate
Save Answer(s)

one of these is
mapped into one
of these

CS 152 L09 Multicycle (39) Patterson Fall 2003 © UCB

Designing a Microinstruction Set

1) Start with list of control signals
2) Group signals together that make sense (vs.

random): called “fields”
3) Place fields in some logical order

(e.g., ALU operation & ALU operands first and
microinstruction sequencing last)

4) To minimize the width, encode operations that
will never be used at the same time

5) Create a symbolic legend for the
microinstruction format, showing name of field
values and how they set the control signals
–Use computers to design computers

CS 152 L09 Multicycle (40) Patterson Fall 2003 © UCB

Again: Alternative multicycle datapath (book)

• Miminizes Hardware: 1 memory, 1 adder

Ideal
Memory

WrAdr

Din

RAdr

32

32

32

Dout

MemWr

32

A
LU

32

32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb

5

5

32

busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2

3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Zero

Zero
PCWrCond PCSrc

32

IorD

M
em

D
ata R

eg

A
LU

 O
ut

B

A

CS 152 L09 Multicycle (41) Patterson Fall 2003 © UCB

1&2) Start with list of control signals, grouped into fields
Signal name Effect when deasserted Effect when asserted

ALUSelA 1st ALU operand = PC 1st ALU operand = Reg[rs]
RegWrite None Reg. is written
MemtoReg Reg. write data input = ALU Reg. write data input = memory
RegDst Reg. dest. no. = rt Reg. dest. no. = rd
MemRead None Memory at address is read,

MDR <= Mem[addr]
MemWrite None Memory at address is written
IorD Memory address = PC Memory address = S
IRWrite None IR <= Memory
PCWrite None PC <= PCSource
PCWriteCond None IF ALUzero then PC <= PCSource
PCSource PCSource = ALU PCSource = ALUout
ExtOp Zero Extended Sign Extended

Si
ng

le
 B

it
C

on
tr

ol

Signal name Value Effect
ALUOp 00 ALU adds

01 ALU subtracts
10 ALU does function code
11 ALU does logical OR

ALUSelB 00 2nd ALU input = 4
01 2nd ALU input = Reg[rt]
10 2nd ALU input = extended,shift left 2
11 2nd ALU input = extended

M
ul

tip
le

 B
it

C
on

tr
ol

CS 152 L09 Multicycle (42) Patterson Fall 2003 © UCB

3&4) Microinstruction Format: unencoded vs. encoded fields

Field Name Width Control Signals Set
wide narrow

ALU Control 4 2 ALUOp
SRC1 2 1 ALUSelA
SRC2 5 3 ALUSelB, ExtOp
ALU Destination 3 2 RegWrite, MemtoReg, RegDst
Memory 3 2 MemRead, MemWrite, IorD
Memory Register 1 1 IRWrite
PCWrite Control 3 2 PCWrite, PCWriteCond, PCSource
Sequencing 3 2 AddrCtl
Total width 24 15 bits

8

CS 152 L09 Multicycle (43) Patterson Fall 2003 © UCB

5) Legend of Fields and Symbolic Names
Field Name Values for Field Function of Field with Specific Value
ALU Add ALU adds

Subt. ALU subtracts
Func code ALU does function code
Or ALU does logical OR

SRC1 PC 1st ALU input = PC
rs 1st ALU input = Reg[rs]

SRC2 4 2nd ALU input = 4
Extend 2nd ALU input = sign ext. IR[15-0]
Extend0 2nd ALU input = zero ext. IR[15-0]
Extshft 2nd ALU input = sign ex., sl IR[15-0]
rt 2nd ALU input = Reg[rt]

destination rd ALU Reg[rd] = ALUout
rt ALU Reg[rt] = ALUout
rt Mem Reg[rt] = Mem

Memory Read PC Read memory using PC
Read ALU Read memory using ALUout for addr
Write ALU Write memory using ALUout for addr

Memory register IR IR = Mem
PC write ALU PC = ALU

ALUoutCond IF ALU Zero then PC = ALUout
Sequencing Seq Go to sequential µinstruction

Fetch Go to the first microinstruction
Dispatch Dispatch using ROM.

CS 152 L09 Multicycle (44) Patterson Fall 2003 © UCB

Quick check: what do these fieldnames mean?

Code Name RegWrite MemToReg RegDest
00 --- 0 X X
01 rd ALU 1 0 1
10 rt ALU 1 0 0
11 rt MEM 1 1 0

Code Name ALUSelB ExtOp
000 --- X X
001 4 00 X
010 rt 01 X
011 ExtShft 10 1
100 Extend 11 1
111 Extend0 11 0

Destination:

SRC2:

CS 152 L09 Multicycle (45) Patterson Fall 2003 © UCB

Specific Sequencer from before
Sequencer-based control unit from last lecture

– Called “microPC” or “µPC” vs. state register
Code Name Effect

00 fetch Next µaddress = 0
01 dispatch Next µaddress = dispatch ROM
10 seq Next µaddress = µaddress + 1

ROM:

Opcode

microPC

1

µAddress
Select
Logic

Adder

ROM

Mux

0
012

R-type 000000 0100
BEQ 000100 0011
ori 001101 0110
LW 100011 1000
SW 101011 1011

CS 152 L09 Multicycle (46) Patterson Fall 2003 © UCB

Legacy Software and Microprogramming
• IBM bet company on 360 Instruction Set Architecture (ISA):

single instruction set for many classes of machines
– (8-bit to 64-bit)

• Stewart Tucker stuck with job of what to do about software
compatibility
– If microprogramming could easily do same instruction set

on many different microarchitectures, then why couldn’t
multiple microprograms do multiple instruction sets on
the same microarchitecture?

– Coined term “emulation”: instruction set interpreter in
microcode for non-native instruction set

– Very successful: in early years of IBM 360 it was hard to
know whether old instruction set or new instruction set
was more frequently used

CS 152 L09 Multicycle (47) Patterson Fall 2003 © UCB

Microprogramming Pros and Cons
• Ease of design
• Flexibility

– Easy to adapt to changes in organization, timing, technology
– Can make changes late in design cycle, or even in the field

• Can implement very powerful instruction sets (just more
control memory)

• Generality
– Can implement multiple instruction sets on same machine.
– Can tailor instruction set to application.

• Compatibility
– Many organizations, same instruction set

• Costly to implement
• Slow

CS 152 L09 Multicycle (48) Patterson Fall 2003 © UCB

Thought: Microprogramming one inspiration for RISC
• If simple instruction could execute at very high

clock rate…
• If you could even write compilers to produce

microinstructions…
• If most programs use simple instructions and addressing

modes…
• If microcode is kept in RAM instead of ROM so as to fix

bugs …
• If same memory used for control memory could be used

instead as cache for “macroinstructions”…
• Then why not skip instruction interpretation by a

microprogram and simply compile directly into lowest
language of machine? (microprogramming is overkill
when ISA matches datapath 1-1)

9

CS 152 L09 Multicycle (49) Patterson Fall 2003 © UCB

Overview of Control
• Control may be designed using one of several initial representations.

The choice of sequence control, and how logic is represented, can then
be determined independently; the control can then be implemented with
one of several methods using a structured logic technique.

Initial Representation Finite State Diagram Microprogram

Sequencing Control Explicit Next State Microprogram counter
Function + Dispatch ROMs

Logic Representation Logic Equations Truth Tables

Implementation PLA ROM
Technique “hardwired control” “microprogrammed control”

CS 152 L09 Multicycle (50) Patterson Fall 2003 © UCB

Summary (1 of 3)

• Disadvantages of the Single Cycle Processor
– Long cycle time
– Cycle time is too long for all instructions except the Load

• Multiple Cycle Processor:
– Divide the instructions into smaller steps
– Execute each step (instead of the entire instruction) in one cycle

• Partition datapath into equal size chunks to minimize
cycle time
– ~10 levels of logic between latches

• Follow same 5-step method for designing “real”
processor

CS 152 L09 Multicycle (51) Patterson Fall 2003 © UCB

Summary (cont’d) (2 of 3)
• Control is specified by finite state diagram
• Specialize state-diagrams easily captured by

microsequencer
– simple increment & “branch” fields
– datapath control fields

• Control design reduces to Microprogramming
• Control is more complicated with:

– complex instruction sets
– restricted datapaths (see the book)

• Simple Instruction set and powerful datapath ⇒ simple
control
– could try to reduce hardware (see the book)
– rather go for speed => many instructions at once!

CS 152 L09 Multicycle (52) Patterson Fall 2003 © UCB

Summary (3 of 3)
• Microprogramming is a fundamental concept

– implement an instruction set by building a very simple processor
and interpreting the instructions

– essential for very complex instructions and when few register
transfers are possible

– Control design reduces to Microprogramming

• Design of a Microprogramming language
– Start with list of control signals
– Group signals together that make sense (vs. random): called “fields”
– Place fields in some logical order (e.g., ALU operation & ALU

operands first and microinstruction sequencing last)
– To minimize the width, encode operations that will never be used at

the same time
– Create a symbolic legend for the microinstruction format, showing

name of field values and how they set the control signals

CS 152 L09 Multicycle (53) Patterson Fall 2003 © UCB

Where to get more information?
• Multiple Cycle Controller: Appendix C of your text

book.
• Microprogramming: Section 5.7 of your text book.
• D. Patterson, “Microprograming,” Scientific

American, March 1983.
• D. Patterson and D. Ditzel, “The Case for the

Reduced Instruction Set Computer,” Computer
Architecture News 8, 6 (October 15, 1980)

CS 152 L09 Multicycle (54) Patterson Fall 2003 © UCB

Microprogram it yourself!
Label ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write

Sequencing
Fetch:Add PC 4 Read PC IR ALU Seq

