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@ £S 152 L10 Pipeline Intro (1) Patterson Fall

Review (2 of 4)

« Control is specified by finite state diagram
« Specialized state-diagrams easily captured by
microsequencer
— simple increment & “branch” fields
— datapath control fields
« Control is more complicated with:
— complex instruction sets
— restricted datapaths (see the book)
« Control design can become Microprogramming
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Review: Overview of Control

+ Control may be designed using one of several initial representations.
The choice of sequence control, and how logic is represented, can then
be determined independently; the control can then be implemented with
one of several methods using a structured logic technique.

Initial Representation Finite State Diagram Microprogram

\7
i

Sequencing Control Explicit Next Statg | Microprogram counter
Function + Dispatch ROMs
e
Logic Representation Logic Equations ruth Tables
‘l\/-<l
Implementation PLA ROM
Technique “hardwired control” “microprogrammed control”
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Review (1 of 4)

» Disadvantages of the Single Cycle Processor
— Long cycle time
— Cycle time is too long for all instructions except the Load
— No reuse of hardware

* Multiple Cycle Processor:
— Divide the instructions into smaller steps
— Execute each step (instead of the entire instruction) in one cycle
+ Partition datapath into equal size chunks to minimize
cycle time
— ~10 levels of logic between latches
* Follow same 5-step method for designing “real”
processor

@ CS 152 L10 Pipeline Intro (2) Patterson Fall

Summary (3 of 4)
* Microprogramming is a fundamental concept
— implement an instruction set by building a very simple processor
and interpreting the instructions
— essential for very complex instructions and when few register
transfers are possible
— Control design reduces to Microprogramming
» Design of a Microprogramming language
— Start with list of control signals
— Group signals together that make sense (vs. random): called “fields”
— Place fields in some logical order (e.g., ALU operation & ALU
operands first and microinstruction sequencing last)
— To minimize the width, encode operations that will never be used at
the same time
— Create a symbolic legend for the microinstruction format, showing
name of field values and how they set the control signals

£S 152 L10 Pipeline Intro (4)
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Can we get CP| <47
» Seems to be lots of “idle” hardware

— Why not overlap instructions? Pipeline
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Pipelining is Naturall

+ Laundry Example

* Ann, Brian, Cathy, Dave GS@S@S

each have one load of clothes =
to wash, dry, and fold

* Washer takes 30 minutes

* Dryer takes 40 minutes

“Folder” takes 20 minutes

@ £S 152 L10 Pipeline Intro (7) Patterson Fall

Pipelined Laundry: Start work ASAP

6PM 7 8 9 10 1 Midnight
} Time
30‘ 40 ‘_40 ‘_40 ‘_40 ‘E‘

;

a

s

k

o

7

d

e

r

* Pipelined laundry takes 3.5 hours for 4 loads

£S 152 L10 Pipeline Intro (9)

Patterson Fall 2003 0 ucs|

The Five Stages of Load

i Cyclet iCycle2  Cycle3 iCycled |Cycles |
e

Load [ Ifetch JRegibec | Exec | Mem [ wr ]

* Ifetch: Instruction Fetch
— Fetch the instruction from the Instruction Memory

» Reg/Dec: Registers Fetch and Instruction
Decode

» Exec: Calculate the memory address
* Mem: Read the data from the Data Memory
» Wr: Write the data back to the register file

@ £S 152 L10 Pipeline Intro (11)
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Sequential Laundry

6 PM 7 8 9 10 1 Midnight
|

Time

30 40 '20'30 40 '20 30 ' 40 '20' 30 40 '20

| S
° __
B

5

» Sequential laundry takes 6 hours for 4 loads
Z I?they learned pipelining, how long would laundry take?
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Pipelining Lessons

Pipelining doesn't help
latency of single task, it
helps throughput of entire
‘ workload

6 PM 7 8 9

I Time

30 40 ' 40 ' 40 40 20 - Pipeline rate limited by
T =" . 1 slowest pipeline stage
‘: @ .IE’ 7 « Multiple tasks operating
k e e B simultaneously usin
° ﬁlﬁ’ 7 different resouyrces ¢
; = Potential s_peedup =
e @ l Number pipe stages
" . E » Unbalanced lengths of pipe
stages reduces speedup
@ . ? + Time to *fill” pipeline and

time to “drain” it reduces

speedup

Stall for Dependences
patterson Fall 2003 © uc|
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Note: These 5 stages were there all along!
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Pipelining
* Improve performance by increasing throughput
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Ideal speedup is number of stages in the pipeline.
o we achieve this?
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Basic ldea
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Graphically Representing Pipelines
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Time —

IFetch IDcd IExec IMem IWB

e 1 --I-b e
FHEH R e

» Can help with answering questions like:
— how many cycles does it take to execute
this code?
—what is the ALU doing during cycle 47?

— use this representation to help understand
datapaths
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b 14, $2, 42
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Administrivia

Office hours in Lab

— Mon 4 - 5:30 Jack, Tue 3:30-5 Kurt,
Wed 3 — 4:30 John, Thu 3:30-5 Ben

Dave’s office hours Tue 3:30 - 5

Lab 3 demo Friday, due Monday

Reading Chapter 6, sections 6.1 to 6.4
Midterm Wed Oct 8 5:30 - 8:30 in 1 LeConte
— Midterm review Sunday Oct 4, 5 PM in 306 Soda
— Bring 1 page, handwritten notes, both sides

— Meet at LaVal's Northside afterwards for Pizza
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|\Fetch IDcd IExec IMem WB |

|IFeIch IDcd Exec IMem IWB |

|
|
|\Fctch IDcd IExcc I1cm IWB |
|
|

|IFetch Ded IExec IMem IWB

Program Flow

Conventional Pipelined Execution Representation

IFetch I Ded I Exec I Mem

IWB
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Slngle Cycle, Multlple Cycle, vs. Pipeline

Cycle 1 Cycle 2 :
o | L | E—
Single Cycle Implementation:

Load Store i Waste

Cycle1 iCycle2 iCycle3 :Cycled iCycle5 {Cycle6 iCycle7 iCycle8 :Cycle9 Tycle

Multiple Cycle Implementation:

0

7S Yy Yy Y Yy Yy Yy Oy

Load Store Retype

tfetch | Reg [ Exec | Mem T wr

tfetch | Reg | Exec | Mem Ifetch

Pipeline Implementation:

Load [ ffetch | Reg [ Exec [ mem T wr ]

store [ Ifetch | Reg [ Exec [ Mem [ wr ]

Riype [ Ifetch [ Reg | Exec [ Mem [ wr ]
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Why Pipeline?

» Suppose we execute 100 instructions
» Single Cycle Machine

—4.5ns/cycle x 1 CPIx 100 inst =450 ns
» Multicycle Machine

—1.0 ns/cycle x 4.1 CPI (due to inst mix) x
100 inst =410 ns

* |deal pipelined machine

—1.0 ns/cycle x (1 CPI x 100 inst + 4 cycle fill)
=104 ns

@ £S 152 L10 Pipeline Intro (19) Patterson Fall

Can pipelining get us into trouble?
¢ Yes: Pipeline Hazards
— structural hazards: attempt to use the same resource two
different ways at the same time

« E.g., combined washer/dryer would be a structural hazard or
folder busy watching TV

— control hazards: attempt to make a decision before condition
is evaluated
« E.g., washing football uniforms and need to get proper detergent
level; need to see after dryer before next load in
« branch instructions
— data hazards: attempt to use item before it is ready

« E.g., one sock of pair in dryer and one in washer; can’t fold until
get sock from washer through dryer

« instruction depends on result of prior instruction still in the
pipeline

« Can always resolve hazards by waiting

— pipeline control must detect the hazard
%take action (or delay action) to resolve hazards
S8 152 110 Pipoline Intro (21)
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Structural Hazards limit performance

» Example: if 1.3 memory accesses per
instruction and only one memory access
per cycle then
—average CPI > 1.3
— otherwise resource is more than 100%

utilized

* One Structural Hazard solution: more
resources
— Instruction cache and Data cache

@ £S 152 L10 Pipeline Intro (23)
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Why Pipeline? Because we can!

Time (clock cycles)

! Reg

! |mso FIETRERE]

rr. Inst 1 > b |

o

o |inst2

? Inst 3 ﬁ
1]

vinst 4 > 'E
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Single Memory is a Structural Hazard

Time (clock cycles)

Load

Instr 1

S0 —

Instr 2

~oa=~0

Instr 3

vinstr 4

etection is easy in this case! (right half highlight means read, left half write)
CS 152 110 Pipeline Intro (22 Patterson Fail 2003 © uce]

Control Hazard Solution #1: Stall

! Time (clock cycles)
n
s
! |Load
r.
[0}
. |Beq
d
¢ | Add
4

« Stall: wait until decision is clear

» Impact: 2 lost cycles (i.e. 3 clock cycles for Beq
instruction above) => slow

* Move decision to end of decode

— save 1 cycle per branch, may stretch clock cycle
CS 152 110 Pipeline Intro (24)
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Control Hazard Solution #2: Predict

Time (clock cycles)
.
£ | Add
© |Beq
d
¢ | Load
4

+ Predict: guess one direction then back up if wrong

« Impact: 0 lost cycles per branch instruction if guess right, 1 if wrong
(right ~ 50% of time)

— Need to “Squash” and restart following instruction if wrong

— Produce CPl on branch of (1*5+2*.5)=1.5

— Total CPI might then be: 1.5* .2+ 1* .8 = 1.1 (20% branch)

2- ’More dynamic schemes: history of branch behavior (~90-99%)
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Data Hazard on r1

add r1,r2,r3
sub r4,r1,r3
and r6,r1,r7
or r8,r1,r9

xor r10,r1,r11

@ £S 152 110 Pipeline Intro (27)
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Data Hazard Solution:

« “Forward” result from one stage to another

Time (clock cycles)

T ORF
, |add r1,r2,r3 E Reg
n
s
t |subrd,ri,r3 El-
r.
O |and r6,r1,r7 Reg
;
d
¢ lor r8,r1,r9 Reg
« “or” OK if define read/write
‘xorr10, ,ri1 Reg
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Control Hazard Solution #3: Delayed Branch

I Time (clock cycles)

n

s

t | Add

r.

o

. |Bed

d

¢ | Misc
Load

A

Delayed Branch: Redefine branch behavior (takes place
after next instruction)

Impact: 0 clock cycles per branch instruction if can find
instruction to put in “slot” (~50% of time)

MS launch more instruction per clock cycle, less useful
C:
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Data Hazard on r1:

« Dependencies backwards in time are hazards

Time (clock cycles)

—_——

add r1,r2,r3 E Reg

:

I
n
s
t |subrd,ri,r3 El-
r.
0 land r6,r1,r7 Reg
r
d
¢ lor r8,r1,r9 r Reg
xor r10,r1,r11 ?' Reg
\ 1%

| @ CS 152 110 Pipeline Intro (28)
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Forwarding (or Bypassing): What about Loads?

» Dependencies backwards in time are hazards

Time (clock cycles)

Iw r1,0(r2)

sub r4,r1,r3

+ Can’t solve with forwarding:
* Must delay/stall instruction dependent on loads

| @ CS 152 L10 Pipeline Intro (30)
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Forwarding (or Bypassing): What about Loads

« Dependencies backwards in time are hazards

Time (clock cycles)

Iw r1,0(r2)

sub r4,r1,r3

« Can’t solve with forwarding:
« Must delay/stall instruction dependent on loads

@ £S 152 L10 Pipeline Intro (31) Patterson Fall

Pipelined Processor (almost) for slides

Valid

—>|

Inst. Mem
> R
« Dcd Ctrl

+ What happens if we start a new instruction

E Every cycle?
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Pipelining the Load Instruction

tstiw [ tretch |JRegibec | Exec [ Mem T wr ]

2ndiw [ tetch JRegbec | Exec | Mem | wr |

rdiw [ Hetch JRegbec | Exec [ Mem [ wr |

* The five independent functional units in the
pipeline datapath are:
— Instruction Memory for the Ifetch stage

— Register File’s Read ports (bus A and busB) for the
Reg/Dec stage

— ALU for the Exec stage
— Data Memory for the Mem stage

— Register File’s Write port (bus W) for the Wr stage
@ 25 152 110 Pipeine inro 35 paterson Fan 2003 0 uca|

IR <- Mem[PC]; PC <~ PC+4; :

I W 3
A< Rirsl BRIl
A4
[ T I T |
v 3 v v
S<A+B; S<-Aorzx; S<-A+SX; S<A+SX; | f Cond |

Inst. Mem

@ CS 152 L10 Pipeline Intro (32)

Pipelined Datapath (as in book); hard to read

-
4

[ I E e

U1 e 1 By 2

£S 152 L10 Pipeline Intro (34)
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The Four Stages of R-type

i Cyclet iCycle2  Cycle3 |Cycled |
[ S N e O Yy

Riype [ ffetch JRegibec | Exec [ wr ]

« Ifetch: Instruction Fetch
— Fetch the instruction from the Instruction Memory

» Reg/Dec: Registers Fetch and Instruction
Decode

* Exec:

— ALU operates on the two register operands
— Update PC

* Wr: Write the ALU output back to the register file

| @ CS 152 L10 Pipeline Intro (36)
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Pipelining the R-type and Load Instruction

{ Cycled iCycle2 i Cycle3 {Cycled iCycle5 {Cycle6 [Cycle7 Cycle8 iCycled
Clock _I I_, _I I_, I

Riype [ ffetch JRegiDec | Exec [ wr ]

Oopsl We have a problgm'

Ritype [ Ifetch [Regbec | Exec | wr |

Load [ Hetch JRegiDec | Exec | Mem iwr 1

Riype [ tetch JRegibec | Exec [ wr /]

Riype [ Ietch JRegibec | Exec | wr |

* We have pipeline conflict or structural
hazard:
— Two instructions try to write to the register file
at the same time!
— Only one write port
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Solution 1: Insert “Bubble” into the Pipeline
§Cycle1 iCycle2 §Cycle3 icCycle4 Cycles Cyl:IeB Cycle7 CycIeB Cycles

Clock I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_l_l

[ ttetch JRegbec | Exec [ wr ]

Load [ Hetch JRegbec | Exec | Mem | Wr |

Rype |_Veteh JRegidec | Exec | wr
Retype | ttetch JRegiDec /Pipeiine Exec | wr H
Riype [ Ifetch K Bubble hRengec [ Exec T w ]

[reon Jrewmee | eree ]

* Insert a “bubble” into the pipeline to prevent 2
writes at the same cycle
— The control logic can be complex.
— Lose instruction fetch and issue opportunity.

* No instruction is started in Cycle 6!

@ £S 152 110 Pipeline Intro (39
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The Four Stages of Store => 5 stages
_| H H H 5_

store [ ietch JRegibec | Exec | Mem | wr

« |Ifetch: Instruction Fetch

— Fetch the instruction from the Instruction
Memory

* Reg/Dec: Registers Fetch and Instruction
Decode

» Exec: Calculate the memory address
* Mem: Write the data into the Data Memory

@ £S 152 L10 Pipeline Intro (41)
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Important Observation

» Each functional unit can only be used once per
instruction

» Each functional unit must be used at the same
stage for all instructions:

— Load uses Register File’'s Write Port during
its 5th stage ! 2 : 4 s

Load [ Ifetch | Regibec | Exec [ Mem [ wr |

— R-type uses Register File’s Write Port during
its 4th stage ! 2 : 4

Riype [ Ifetch JRegiDec | Exec | wr ]

¢ 2 ways to solve this pipeline hazard.

@ CS 152 L10 Pipeline Intro (38) Patterson Fall

Solution 2: Delay R-type’s Write by One Cycle

» Delay R-type’s register write by one cycle:

— Now R-type instructions also use Reg File’s write port
at Stage 5 1 2 3 4 5

Riype [ Hetch JRegimec [ Exec | Mem [ wr ]

— Mem stage is a NOP stage: nothing is being done.
i Cyclet iCycle2 { Cycle3 {Cycled iCycle5 iCycle6 iCycle7 iCycle8 Cycled |

Clock I_I_I_I_I_I_I_I_I_I_I_I_I_I_I_l_l_l_l

Riype [ ffetch JRegibec | Exec [ wem T wr ]

Riype [ tfetch JRegiDec | Exec [ Mem | wr |

Load [ Hetch JRegmec | Exec [ Mem T wr |

| @ CS 152 110 Pipeline Intro (40

Riype [ tfetch JRegibec | Exec [ Mem | wr |

Riype [ ffetch JRegibec | Exec | wem [ wr |
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The Three Stages of Beq => 5 stages
i i = =

Beq [ tfetch [Regec | Exec | mem | wr

« Ifetch: Instruction Fetch

— Fetch the instruction from the Instruction Memory
* Reg/Dec:

— Registers Fetch and Instruction Decode
* Exec:

— compares the two register operand,

— select correct branch target address

— latch into PC

| @ CS 152 L10 Pipeline Intro (42
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Peer Instruction
§Cycle1 gcwez gcycle3 gcyclel ;Cycleﬁ §Cyclea ;Cycle?
ook LT L L LI

tstiw [ tetch JRegDec [ Exec [ Memt | Memz | wr

2ndiw [ Hetch JRegiDec | Exec | Mem1 | Mem2 Wr

sraw | Metch [ Regibec | Exec [ Memt J memz T wr ]

« Suppose a big (overlapping) data cache results in a data
cache latency of 2 clock cycles and a 6-stage pipeline. What
is the impact?

. Instruction bandwidth is now 5/6-ths of the 5-stage pipeline

. Instruction bandwidth is now 1/2 of the 5-stage pipeline

. The branch delay slot is now 2 instructions

. The load-use hazard can be with 2 instructions following load

. Both 3 and 4: branch delay and load-use now 2 instructions

a A~ WwN =

6. None of the above
CS 152 L10 Pipeline Intro (43) Patterson Fall

Peer Instruction
Cycle 1 Cyclaz Cycle3 i Cyl:le4 t:ycles CyclsG Cyl:le7

1stadd| Hetch JRegibec | Exec | Memwr|

2ndiw [ tretch JRegibec | Exec | mem T wr |

3rdadd [ Ifetch JRegec | Exec | Memmwir] :
» Suppose we use with a 4 stage pipeline that combines
memory access and write back stages for all instructions but
load, stalling when there are structural hazards. Impact?

. The branch delay slot is now 0 instructions

. Every load stalls since it has a structural hazard

. Every store stalls since it has a structural hazard

. Both 2 & 3: loads & stores stall due to structural hazards

. Every load stalls, but there is no load-use hazard anymore

a ~ ON =

. Both 2 & 3, but there is no load-use hazard anymore
7. None of the above
£5 152 110 Pipaite nv (45) Pattrson Fan 2003 0 uca|

Summary: Pipelining
+ Reduce CPI by overlapping many instructions
— Average throughput of approximately 1 CPI with fast clock
+ Utilize capabilities of the Datapath
— start next instruction while working on the current one
— limited by length of longest stage (plus fill/flush)
— detect and resolve hazards
* What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

* What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

@ £S 152 L10 Pipeline Intro (47)
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Peer Instruction
i Cyclet iCycle2 | Cycle3 Cycle4 iCycle5 iCycle6 iCycle? !

Clock_l_'_l_,_l_,_l_'_l_,_l_,_l—l |_

tstiw [ tetcht | ifetchz [Regibec | Exec [ Mem T wr [

» Suppose a big (overlapping) | cache results in a I'cache
latency of 2 clock cycles and a 6-stage pipeline. What is the
impact?

. Instruction bandwidth is now 5/6-ths of the 5-stage pipeline

. Instruction bandwidth is now 1/2 of the 5-stage pipeline

. The branch delay slot is now 2 instructions

. The load-use hazard can be with 2 instructions following load

. Both 3 and 4: branch delay and load-use now 2 instructions

. None of the above

@ CS 152 L10 Pipeline Intro (44) Patterson Fall
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Designing a Pipelined Processor

» Go back and examine your datapath and
control diagram

» Associate resources with states

* Ensure that backwards flows do not
conflict, or figure out how to resolve

+ Assert control in appropriate stage

| @ CS 152 110 Pipeline Intro (46)
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