
1

CS 152 L10 Pipeline Intro (1) Patterson Fall 2003 © UCB

CS152 – Computer Architecture and
Engineering

Lecture 10 – Introduction to Pipelining
2003-09-24

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

CS 152 L10 Pipeline Intro (2) Patterson Fall 2003 © UCB

Review (1 of 4)

• Disadvantages of the Single Cycle Processor
– Long cycle time
– Cycle time is too long for all instructions except the Load
– No reuse of hardware

• Multiple Cycle Processor:
– Divide the instructions into smaller steps
– Execute each step (instead of the entire instruction) in one cycle

• Partition datapath into equal size chunks to minimize
cycle time
– ~10 levels of logic between latches

• Follow same 5-step method for designing “real”
processor

CS 152 L10 Pipeline Intro (3) Patterson Fall 2003 © UCB

Review (2 of 4)
• Control is specified by finite state diagram
• Specialized state-diagrams easily captured by

microsequencer
– simple increment & “branch” fields
– datapath control fields

• Control is more complicated with:
– complex instruction sets
– restricted datapaths (see the book)

• Control design can become Microprogramming

CS 152 L10 Pipeline Intro (4) Patterson Fall 2003 © UCB

Summary (3 of 4)
• Microprogramming is a fundamental concept

– implement an instruction set by building a very simple processor
and interpreting the instructions

– essential for very complex instructions and when few register
transfers are possible

– Control design reduces to Microprogramming

• Design of a Microprogramming language
– Start with list of control signals
– Group signals together that make sense (vs. random): called “fields”
– Place fields in some logical order (e.g., ALU operation & ALU

operands first and microinstruction sequencing last)
– To minimize the width, encode operations that will never be used at

the same time
– Create a symbolic legend for the microinstruction format, showing

name of field values and how they set the control signals

CS 152 L10 Pipeline Intro (5) Patterson Fall 2003 © UCB

Review: Overview of Control
• Control may be designed using one of several initial representations.

The choice of sequence control, and how logic is represented, can then
be determined independently; the control can then be implemented with
one of several methods using a structured logic technique.

Initial Representation Finite State Diagram Microprogram

Sequencing Control Explicit Next State Microprogram counter
Function + Dispatch ROMs

Logic Representation Logic Equations Truth Tables

Implementation PLA ROM
Technique “hardwired control” “microprogrammed control”

CS 152 L10 Pipeline Intro (6) Patterson Fall 2003 © UCB

Can we get CPI < 4?

Ideal
Memory

WrAdr

Din

RAdr

32

32

32

Dout

MemWr

32

A
LU

32

32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb

5

5

32

busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2

3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Zero

Zero
PCWrCond PCSrc

32

IorD

M
em

D
ata R

eg

A
LU

 O
ut

B

A

• Seems to be lots of “idle” hardware
– Why not overlap instructions? Pipeline

2

CS 152 L10 Pipeline Intro (7) Patterson Fall 2003 © UCB

Pipelining is Natural!

• Laundry Example
• Ann, Brian, Cathy, Dave

each have one load of clothes
to wash, dry, and fold

• Washer takes 30 minutes

• Dryer takes 40 minutes

• “Folder” takes 20 minutes

A B C D

CS 152 L10 Pipeline Intro (8) Patterson Fall 2003 © UCB

Sequential Laundry

• Sequential laundry takes 6 hours for 4 loads
• If they learned pipelining, how long would laundry take?

A

B

C

D

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

CS 152 L10 Pipeline Intro (9) Patterson Fall 2003 © UCB

Pipelined Laundry: Start work ASAP

• Pipelined laundry takes 3.5 hours for 4 loads

A

B

C

D

6 PM 7 8 9 10 11 Midnight

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

CS 152 L10 Pipeline Intro (10) Patterson Fall 2003 © UCB

Pipelining Lessons
• Pipelining doesn’t help

latency of single task, it
helps throughput of entire
workload

• Pipeline rate limited by
slowest pipeline stage

• Multiple tasks operating
simultaneously using
different resources

• Potential speedup =
Number pipe stages

• Unbalanced lengths of pipe
stages reduces speedup

• Time to “fill” pipeline and
time to “drain” it reduces
speedup

• Stall for Dependences

A

B

C

D

6 PM 7 8 9

T
a
s
k

O
r
d
e
r

Time

30 40 40 40 40 20

CS 152 L10 Pipeline Intro (11) Patterson Fall 2003 © UCB

The Five Stages of Load

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch and Instruction
Decode

• Exec: Calculate the memory address
• Mem: Read the data from the Data Memory
• Wr: Write the data back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

CS 152 L10 Pipeline Intro (12) Patterson Fall 2003 © UCB

Note: These 5 stages were there all along!
IR <= MEM[PC]

PC <= PC + 4

R-type

ALUout
<= A fun B

R[rd]
<= ALUout

ALUout
<= A op ZX

R[rt]
<= ALUout

ORi

ALUout
<= A + SX

R[rt] <= M

M <=
MEM[ALUout]

LW

ALUout
<= A + SX

MEM[ALUout]
<= B

SW

0000

0001

0100

0101

0110

0111

1000

1001

1010

1011

1100

BEQ

0010

If A = B then PC <=
ALUout

ALUout
<= PC +SX

E
xe

cu
te

M
em

or
y

W
rit

e-
ba

ck
D

ec
od

e
Fe

tc
h

3

CS 152 L10 Pipeline Intro (13) Patterson Fall 2003 © UCB

Pipelining
• Improve performance by increasing throughput

Ideal speedup is number of stages in the pipeline.
Do we achieve this?

CS 152 L10 Pipeline Intro (14) Patterson Fall 2003 © UCB

Basic Idea

CS 152 L10 Pipeline Intro (15) Patterson Fall 2003 © UCB

Graphically Representing Pipelines

• Can help with answering questions like:
– how many cycles does it take to execute

this code?
– what is the ALU doing during cycle 4?
– use this representation to help understand

datapaths
CS 152 L10 Pipeline Intro (16) Patterson Fall 2003 © UCB

Conventional Pipelined Execution Representation

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB
Program Flow

Time

CS 152 L10 Pipeline Intro (17) Patterson Fall 2003 © UCB

Administrivia

• Office hours in Lab
– Mon 4 – 5:30 Jack, Tue 3:30-5 Kurt,

Wed 3 – 4:30 John, Thu 3:30-5 Ben
• Dave’s office hours Tue 3:30 – 5
• Lab 3 demo Friday, due Monday
• Reading Chapter 6, sections 6.1 to 6.4
• Midterm Wed Oct 8 5:30 - 8:30 in 1 LeConte

– Midterm review Sunday Oct 4, 5 PM in 306 Soda
– Bring 1 page, handwritten notes, both sides
– Meet at LaVal’s Northside afterwards for Pizza

CS 152 L10 Pipeline Intro (18) Patterson Fall 2003 © UCB

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem

Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Clk

Single Cycle Implementation:

Load Store Waste

Ifetch

R-type

Ifetch Reg Exec Mem WrR-type

Cycle 1 Cycle 2

4

CS 152 L10 Pipeline Intro (19) Patterson Fall 2003 © UCB

Why Pipeline?

• Suppose we execute 100 instructions
• Single Cycle Machine

– 4.5 ns/cycle x 1 CPI x 100 inst = 450 ns
• Multicycle Machine

– 1.0 ns/cycle x 4.1 CPI (due to inst mix) x
100 inst = 410 ns

• Ideal pipelined machine
– 1.0 ns/cycle x (1 CPI x 100 inst + 4 cycle fill)

= 104 ns

CS 152 L10 Pipeline Intro (20) Patterson Fall 2003 © UCB

Why Pipeline? Because we can!

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Inst 0

Inst 1

Inst 2

Inst 4

Inst 3

A
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

CS 152 L10 Pipeline Intro (21) Patterson Fall 2003 © UCB

Can pipelining get us into trouble?
• Yes: Pipeline Hazards

– structural hazards: attempt to use the same resource two
different ways at the same time

• E.g., combined washer/dryer would be a structural hazard or
folder busy watching TV

– control hazards: attempt to make a decision before condition
is evaluated

• E.g., washing football uniforms and need to get proper detergent
level; need to see after dryer before next load in

• branch instructions
– data hazards: attempt to use item before it is ready

• E.g., one sock of pair in dryer and one in washer; can’t fold until
get sock from washer through dryer

• instruction depends on result of prior instruction still in the
pipeline

• Can always resolve hazards by waiting
– pipeline control must detect the hazard
– take action (or delay action) to resolve hazards

CS 152 L10 Pipeline Intro (22) Patterson Fall 2003 © UCB

Mem

Single Memory is a Structural Hazard

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Instr 1

Instr 2

Instr 3

Instr 4

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUReg Mem Reg

A
LUMem Reg Mem Reg

Detection is easy in this case! (right half highlight means read, left half write)

CS 152 L10 Pipeline Intro (23) Patterson Fall 2003 © UCB

Structural Hazards limit performance

• Example: if 1.3 memory accesses per
instruction and only one memory access
per cycle then
– average CPI ≥ 1.3
– otherwise resource is more than 100%

utilized
• One Structural Hazard solution: more

resources
– Instruction cache and Data cache

CS 152 L10 Pipeline Intro (24) Patterson Fall 2003 © UCB

• Stall: wait until decision is clear
• Impact: 2 lost cycles (i.e. 3 clock cycles for Beq

instruction above) => slow
• Move decision to end of decode

– save 1 cycle per branch, may stretch clock cycle

Control Hazard Solution #1: Stall
I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Load

Beq

Add

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

A
LUReg Mem RegMemLost

potential

5

CS 152 L10 Pipeline Intro (25) Patterson Fall 2003 © UCB

• Predict: guess one direction then back up if wrong
• Impact: 0 lost cycles per branch instruction if guess right, 1 if wrong

(right ~ 50% of time)
– Need to “Squash” and restart following instruction if wrong
– Produce CPI on branch of (1 *.5 + 2 * .5) = 1.5
– Total CPI might then be: 1.5 * .2 + 1 * .8 = 1.1 (20% branch)

• More dynamic schemes: history of branch behavior (~90-99%)

Control Hazard Solution #2: Predict
I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Load

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

Mem

A
LUReg Mem Reg

CS 152 L10 Pipeline Intro (26) Patterson Fall 2003 © UCB

• Delayed Branch: Redefine branch behavior (takes place
after next instruction)

• Impact: 0 clock cycles per branch instruction if can find
instruction to put in “slot” (~50% of time)

• As launch more instruction per clock cycle, less useful

Control Hazard Solution #3: Delayed Branch
I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

Add

Beq

Misc

A
LUMem Reg Mem Reg

A
LUMem Reg Mem Reg

Mem

A
LUReg Mem Reg

Load Mem

A
LUReg Mem Reg

CS 152 L10 Pipeline Intro (27) Patterson Fall 2003 © UCB

Data Hazard on r1

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

CS 152 L10 Pipeline Intro (28) Patterson Fall 2003 © UCB

• Dependencies backwards in time are hazards
Data Hazard on r1:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

Im

A
LUReg Dm Reg

A
LUIm Reg Dm Reg

CS 152 L10 Pipeline Intro (29) Patterson Fall 2003 © UCB

• “Forward” result from one stage to another

• “or” OK if define read/write properly

Data Hazard Solution:

I
n
s
t
r.

O
r
d
e
r

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

IF ID/RF EX MEM WBA
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

A
LUIm Reg Dm Reg

Im

A
LUReg Dm Reg

A
LUIm Reg Dm Reg

CS 152 L10 Pipeline Intro (30) Patterson Fall 2003 © UCB

Reg

• Dependencies backwards in time are hazards

• Can’t solve with forwarding:
• Must delay/stall instruction dependent on loads

Forwarding (or Bypassing): What about Loads?

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
LUIm Reg Dm

A
LUIm Reg Dm Reg

6

CS 152 L10 Pipeline Intro (31) Patterson Fall 2003 © UCB

Reg

• Dependencies backwards in time are hazards

•

• Can’t solve with forwarding:
• Must delay/stall instruction dependent on loads

Forwarding (or Bypassing): What about Loads

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

IF ID/RF EX MEM WBA
LUIm Reg Dm

A
LUIm Reg Dm RegStall

CS 152 L10 Pipeline Intro (32) Patterson Fall 2003 © UCB

Control and Datapath: Split state diag into 5 pieces
IR <- Mem[PC]; PC <– PC+4;

A <- R[rs]; B<– R[rt]

S <– A + B;

R[rd] <– S;

S <– A + SX;

M <– Mem[S]

R[rd] <– M;

S <– A or ZX;

R[rt] <– S;

S <– A + SX;

Mem[S] <- B

If Cond
PC < PC+SX;

E
xe

c

R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

A

B

S

R
eg

Fi
le

E
qu

al

P
C

N
ex

t P
C

IR

In
st

. M
em

D

M

CS 152 L10 Pipeline Intro (33) Patterson Fall 2003 © UCB

Pipelined Processor (almost) for slides

• What happens if we start a new instruction
every cycle?

E
xe

c

R
eg

.
Fi

le

M
em

A
cc

es
s

D
at

a
M

em

A

B

S

M

R
eg

Fi
le

E
qu

al

P
C

N
ex

t P
C

IR

In
st

. M
em

Valid

IR
ex

D
cd

C
trl

IR
m

em

E
x

C
trl

IR
w

b

M
em

C
trl

W
B

C
trl

D

CS 152 L10 Pipeline Intro (34) Patterson Fall 2003 © UCB

Pipelined Datapath (as in book); hard to read

CS 152 L10 Pipeline Intro (35) Patterson Fall 2003 © UCB

Pipelining the Load Instruction

• The five independent functional units in the
pipeline datapath are:
– Instruction Memory for the Ifetch stage
– Register File’s Read ports (bus A and busB) for the

Reg/Dec stage
– ALU for the Exec stage
– Data Memory for the Mem stage
– Register File’s Write port (bus W) for the Wr stage

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch Reg/Dec Exec Mem Wr1st lw

Ifetch Reg/Dec Exec Mem Wr2nd lw

Ifetch Reg/Dec Exec Mem Wr3rd lw

CS 152 L10 Pipeline Intro (36) Patterson Fall 2003 © UCB

The Four Stages of R-type

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec: Registers Fetch and Instruction
Decode

• Exec:
– ALU operates on the two register operands
– Update PC

• Wr: Write the ALU output back to the register file

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec WrR-type

7

CS 152 L10 Pipeline Intro (37) Patterson Fall 2003 © UCB

Pipelining the R-type and Load Instruction

• We have pipeline conflict or structural
hazard:
– Two instructions try to write to the register file

at the same time!
– Only one write port

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type

Oops! We have a problem!

CS 152 L10 Pipeline Intro (38) Patterson Fall 2003 © UCB

Important Observation
• Each functional unit can only be used once per

instruction
• Each functional unit must be used at the same

stage for all instructions:
– Load uses Register File’s Write Port during

its 5th stage

– R-type uses Register File’s Write Port during
its 4th stage

° 2 ways to solve this pipeline hazard.

Ifetch Reg/Dec Exec Mem WrLoad

1 2 3 4 5

Ifetch Reg/Dec Exec WrR-type

1 2 3 4

CS 152 L10 Pipeline Intro (39) Patterson Fall 2003 © UCB

Solution 1: Insert “Bubble” into the Pipeline

• Insert a “bubble” into the pipeline to prevent 2
writes at the same cycle
– The control logic can be complex.
– Lose instruction fetch and issue opportunity.

• No instruction is started in Cycle 6!

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Exec WrR-type

Ifetch Reg/Dec Exec WrR-type Pipeline

Bubble

Ifetch Reg/Dec Exec Wr

CS 152 L10 Pipeline Intro (40) Patterson Fall 2003 © UCB

Solution 2: Delay R-type’s Write by One Cycle
• Delay R-type’s register write by one cycle:

– Now R-type instructions also use Reg File’s write port
at Stage 5

– Mem stage is a NOP stage: nothing is being done.

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec Mem WrLoad

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Mem WrR-type

Ifetch Reg/Dec Exec WrR-type Mem

Exec

Exec

Exec

Exec

1 2 3 4 5

CS 152 L10 Pipeline Intro (41) Patterson Fall 2003 © UCB

The Four Stages of Store => 5 stages

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction

Memory
• Reg/Dec: Registers Fetch and Instruction

Decode
• Exec: Calculate the memory address
• Mem: Write the data into the Data Memory

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemStore Wr

CS 152 L10 Pipeline Intro (42) Patterson Fall 2003 © UCB

The Three Stages of Beq => 5 stages

• Ifetch: Instruction Fetch
– Fetch the instruction from the Instruction Memory

• Reg/Dec:
– Registers Fetch and Instruction Decode

• Exec:
– compares the two register operand,
– select correct branch target address
– latch into PC

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Ifetch Reg/Dec Exec MemBeq Wr

8

CS 152 L10 Pipeline Intro (43) Patterson Fall 2003 © UCB

Peer Instruction

• Suppose a big (overlapping) data cache results in a data
cache latency of 2 clock cycles and a 6-stage pipeline. What
is the impact?

1. Instruction bandwidth is now 5/6-ths of the 5-stage pipeline
2. Instruction bandwidth is now 1/2 of the 5-stage pipeline
3. The branch delay slot is now 2 instructions
4. The load-use hazard can be with 2 instructions following load
5. Both 3 and 4: branch delay and load-use now 2 instructions

6. None of the above

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

1st lw

2nd lw

3rd lw

Ifetch Reg/Dec Exec Mem1 WrMem2

Ifetch Reg/Dec Exec Mem1 WrMem2

Ifetch Reg/Dec Exec Mem1 WrMem2

CS 152 L10 Pipeline Intro (44) Patterson Fall 2003 © UCB

Peer Instruction

• Suppose a big (overlapping) I cache results in a I cache
latency of 2 clock cycles and a 6-stage pipeline. What is the
impact?

1. Instruction bandwidth is now 5/6-ths of the 5-stage pipeline
2. Instruction bandwidth is now 1/2 of the 5-stage pipeline
3. The branch delay slot is now 2 instructions
4. The load-use hazard can be with 2 instructions following load
5. Both 3 and 4: branch delay and load-use now 2 instructions
6. None of the above

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

1st lw Ifetch1 Reg/Dec Exec Mem WrIfetch2

CS 152 L10 Pipeline Intro (45) Patterson Fall 2003 © UCB

Peer Instruction

• Suppose we use with a 4 stage pipeline that combines
memory access and write back stages for all instructions but
load, stalling when there are structural hazards. Impact?

1. The branch delay slot is now 0 instructions
2. Every load stalls since it has a structural hazard
3. Every store stalls since it has a structural hazard
4. Both 2 & 3: loads & stores stall due to structural hazards
5. Every load stalls, but there is no load-use hazard anymore
6. Both 2 & 3, but there is no load-use hazard anymore

7. None of the above

Clock

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

1st add

2nd lw

3rd add

Ifetch Reg/Dec Exec Mem/Wr

Ifetch Reg/Dec Exec

Ifetch Reg/Dec Exec Mem/Wr

Mem Wr

CS 152 L10 Pipeline Intro (46) Patterson Fall 2003 © UCB

Designing a Pipelined Processor

• Go back and examine your datapath and
control diagram

• Associate resources with states
• Ensure that backwards flows do not

conflict, or figure out how to resolve
• Assert control in appropriate stage

CS 152 L10 Pipeline Intro (47) Patterson Fall 2003 © UCB

Summary: Pipelining
• Reduce CPI by overlapping many instructions

– Average throughput of approximately 1 CPI with fast clock
• Utilize capabilities of the Datapath

– start next instruction while working on the current one
– limited by length of longest stage (plus fill/flush)
– detect and resolve hazards

• What makes it easy
– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• What makes it hard?
– structural hazards: suppose we had only one memory
– control hazards: need to worry about branch instructions
– data hazards: an instruction depends on a previous instruction

