CS152 — Computer Architecture and
Engineering

Lecture 10 — Introduction to Pipelining
2003-09-24

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

ﬂ CS 152 L10 Pipeline Intro (1) Patterson Fall 2003 © UCB

Review (1 of 4)

Disadvantages of the Single Cycle Processor

— Long cycle time

— Cycle time is too long for all instructions except the Load
— No reuse of hardware

« Multiple Cycle Processor:
— Divide the instructions into smaller steps
— Execute each step (instead of the entire instruction) in one cycle
« Partition datapath into equal size chunks to minimize
cycle time
— ~10 levels of logic between latches
* Follow same 5-step method for designing “real”
processor

ﬂ CS 152 L10 Pipeline Intro (2) Patterson Fall 2003 © UCB

Review (2 of 4)

« Control is specified by finite state diagram

« Specialized state-diagrams easily captured by
microsequencer

— simple increment & “branch” fields
— datapath control fields
« Control is more complicated with:
— complex instruction sets
— restricted datapaths (see the book)
« Control design can become Microprogramming

ﬂ CS 152 L10 Pipeline Intro (3) Patterson Fall 2003 © UCB

Summary (3 of 4)

Microprogramming is a fundamental concept

implement an instruction set by building a very simple processor
and interpreting the instructions

essential for very complex instructions and when few register
transfers are possible

Control design reduces to Microprogramming

« Design of a Microprogramming language

Start with list of control signals
Group signals together that make sense (vs. random): called “fields”

Place fields in some logical order (e.g., ALU operation & ALU
operands first and microinstruction sequencing last)

To minimize the width, encode operations that will never be used at
the same time

Create a symbolic legend for the microinstruction format, showing
name of field values and how they set the control signals

ﬂ CS 152 L10 Pipeline Intro (4) Patterson Fall 2003 © UCB

Review: Overview of Control

« Control may be designed using one of several initial representations.
The choice of sequence control, and how logic is represented, can then
be determined independently; the control can then be implemented with
one of several methods using a structured logic technique.

Initial Representation

Sequencing Control

Logic Representation

Implementation
Technique

ﬂ CS 152 L10 Pipeline Intro (5)

Finite State Diagram

Explicit Ne@
Function

Logic Equations ruth Tables

J
o

PLA

“hardwired control”

Microprogram

A

Microprogram counter
+ Dispatch ROMs

OM

“microprogrammed control”

Patterson Fall 2003 © UCB

Can we get CP| <47

« Seems to be lots of “idle” hardware
— Why not overlap instructions? Pipeline

PCWr PCWrCond PCSrc
Zero |
— 1
lorD MemWr IRWr RegDst RegWr ALUSelA 1| < A
32
' 32 | =
Vi b
PC |« — ,é\ e
- 732 Rs = \Zero
0 | > +—| Ra é S
32 = RAdr o #— &y 5
c c 32 Rb busA S P> >
o Vi | A 1
2 |® deal 2. 17 Req Fil Eaad JE =
——P] 1 M 5 0 eg File ~~ ,
Vg emory 21 3% 4 —pl0 AH ol
4 P! WrAdr 2|8|]3 g | Rw el . 3, > 32| =
32 L . Din Dout V4 E Rd ’ busW busB ?32 32 —
I | ® oo r ALU
Q /1| ux 9o <<?2 —> 3/ Control
7
"o 4

Imm ——3p1 Extend —ie

ALUOp

MemtoReg ALUSelB

ExtOp
ﬂ CS 152 L10 Pipeline Intro (6) Patterson Fall 2003 © UCB

Pipelining-is Natural!

* Laundry Example @@@

* Ann, Brian, Cathy, Dave
each have one load of clothes —=
to wash, dry, and fold

« Washer takes 30 minutes

* Dryer takes 40 minutes

 “Folder” takes 20 minutes QI-F

ﬂ CS 152 L10 Pipeline Intro (7) Patterson Fall 2003 © UCB

Sequential Laundry
6 PM 7 8 9 10 11 Midnight

[
. >
| Time

30 40 20 30 40 20 30 40 20 30 40 20

: | & (4
: Joph:
& Sk
' & Toph

« Sequential laundry takes 6 hours for 4 loads
2 I; they learned pipelining, how long would laundry take?

CS 152 L10 Pipeline Intro (8) Patterson Fall 2003 © UCB

Pipelined Laundry: Start work ASAP

6 PM 7 8 9 10 11 Midnight

' >

30 40 40 40 40 20

. | & (Jips

o | & [|o)h7

* | &S 47
v@ D_;[

* Pipelined laundry takes 3.5 hours for 4 loads

ﬂ CS 152 L10 Pipeline Intro (9) Patterson Fall 2003 © UCB

Pipelining Lessons

« Pipelining doesn’t help

6 IIDM ! 8 9 latency of single task, it
| Time helps throughput of entire
| | | | | workload
30 40 40 40 40 20 - Pipeline rate limited by
T 5;5 =—7 o slowest pipeline stage
: O™ F - Multiple tasks operating
k 5. simultaneously using
o ol 57 different resources
g — . * Potential speedup =
. @5 ﬁ — Number pipe stages
r N f « Unbalanced lengths of pipe
ﬁ H stages reduces speedup
v @ N 7 * Time to “fillI” pipeline and

time to “drain” it reduces
speedup

Q « Stall for Dependences
CS 152 L10 Pipeline Intro (10) Patterson Fall 2003 © UCB

The Five Stages of Load

Cycle 1 CycIeZ i Cycle3 :Cycle4 Cycle5
| | I | |

Load | Ifetch IReg/DecI Exec I Mem I Wr

* |fetch: Instruction Fetch
— Fetch the instruction from the Instruction Memory

* Reg/Dec: Registers Fetch and Instruction
Decode

» Exec: Calculate the memory address
 Mem: Read the data from the Data Memory
* Wr: Write the data back to the register file

ﬂ CS 152 L10 Pipeline Intro (11) Patterson Fall 2003 © UCB

Note: These 5 stages were there all along!

IR <= MEM[PC]
PC <= PC + 4
0000

BEQ

ALUout
<= A + SX <= A + SX

1000 1011

v v

M <=
MEMI[ALUout]

1001

ALUout If A=Bthen PC <

ALUout

0010

MEM[ALUout]
<=B

1100

R[rd]
<= ALUout

0101

R[rt]
<= ALUout

0111

CS 152 L10 Pipeline Intro (12) Patterson Fall 2003 © UCB

Pipelining
Improve performance by increasing throughput

o
Program
avaaifon] z 4 (] B 10 12 14 15 |
ardar Tirne T T T T T T T T —*
lininsrustions)
he e, 4000 'mf;ﬁmﬁm AL :.:E-;GE: R
+ M ezt nction) Cot:
b 2, 0OKY B e paweid 1Y BT el I
* M | rect oy
| 82, 00 B g
B e
Prooegr am
ayac o] 2 4 (] B 10 12 14
crder Tire T T T T T T T *
N irtmdions)
e, 4000800 (e [ReR| MU | anams | PR
M| renuction =
e $2 2000800 Zrs | g Rep| MU | = |Ren
i
Ine 53, 200K30H 2ns |l |Ren| mu | B Re
¥
- il i} fra i i
ins 2res ires ins s

Ideal speedup is number of stages in the pipeline.

@0 we achieve this?
CS 152 L10 Pipeline Intro (13) Patterson Fall 2003 © UCB

Basic ldea

F: Frestnuction #=1ch I0: Ihsruction decode’ ER: Eveouie MIEM: Memony sccess | WE: Wiite bach,
resisher ile read address culodation

g Pl
 Lkira . L [_r-\-\-'-\.___-\-
[FifR 1 .
] gt S Lo &
L, T Fulde p g [LTI]
ol | FLFR- ras o Lokl Fuwad
Imlrril s gt ble
= 1]
mammy L
E.:.': | o
1 WL
1 das
5 il Y e
i Cha IS L
. TR R ..

CS 152 L10 Pipeline Intro (14) Patterson Fall 2003 © UCB

Graphically Representing Pipelines

Prr g am
s on

of dar

in irsmacion)

T

74

e 100, 2004

sk $4, $2, =

.

Time (in doch opdes)

cc2

cC3

o AL

H

=

Reg

cC4

A

LCE

—

e Y iE

A

LCa

—]

Reg

» Can help with answering questions like:
— how many cycles does it take to execute

this code?
— what is the ALU doing during cycle 47?

— use this representation to help understand

datapaths

CS 152 L10 Pipeline Intro (15)

Patterson Fall 2003 © UCB

Conventional Pipelined Execution Representation

Time

IFetch I Dcd I Exec I Mem

IFetch IDcd IExec WB
IFetch IDcd em I WB
IFetch | Dcd Xec IMem I WB

IFetch Dcd IExec IMem I WB

Program Flow

4 ¥ |Fetch IDCd IExec IMem IWB

Q CS 152 L10 Pipeline Intro (16) Patterson Fall 2003 © UCB

Administrivia

o Office hours in Lab

— Mon 4 — 5:30 Jack, Tue 3:30-5 Kurt,
Wed 3 — 4:30 John, Thu 3:30-5 Ben

» Dave’s office hours Tue 3:30 — 5
* Lab 3 demo Friday, due Monday
* Reading Chapter 6, sections 6.1 t0 6.4

 Midterm Wed Oct 8 5:30 - 8:30 in 1 LeConte
— Midterm review Sunday Oct 4, 5 PM in 306 Soda
— Bring 1 page, handwritten notes, both sides
— Meet at LaVal's Northside afterwards for Pizza

CS 152 L10 Pipeline Intro (17) Patterson Fall 2003 © UCB

Slngle Cycle, Multiple Cycle vs. Pipeline

Clk

Clk

B

Cycle 1 Cycle 2)-
Single Cycle Implementation:
Load I Store Waste
Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 §Cyc|e§10
Multiple Cycle Implementation: :
Load Store R-type

Ifetch I Reg I Exec IMem I Wr llfetch I Reg I Exec IMem Ilfetch

Pipeline Implementation:

Load

Ifetch I Reg IExec IMem I Wr

Store

Ifetch I Reg IExec IMem I Wr

R-type

Ifetch I Reg IExec IMem I Wr

CS 152 L10 Pipeline Intro (18)

Patterson Fall 2003 © UCB

Why Pipeline?

« Suppose we execute 100 instructions
* Single Cycle Machine
— 4.5 ns/cycle x1 CPIx 100 inst =450 ns

* Multicycle Machine

— 1.0 ns/cycle x 4.1 CPI (due to inst mix) x
100 inst =410 ns

* |deal pipelined machine

— 1.0 ns/cycle x (1 CPIl x 100 inst + 4 cycle fill)
=104 ns

ﬂ CS 152 L10 Pipeline Intro (19) Patterson Fall 2003 © UCB

Why Pipeline? Because we can!

Time (clock cycles)

Inst 0

S ~ 00 3 -~

Inst 1

Inst 2

= 0O Q=0

Inst 3

vinst 4 R
eg

ﬂ CS 152 L10 Pipeline Intro (20) Patterson Fall 2003 © UCB

Can pipelining get us into trouble?
 Yes: Pipeline Hazards
— structural hazards: attempt to use the same resource two
different ways at the same time

« E.g., combined washer/dryer would be a structural hazard or
folder busy watching TV

— control hazards: attempt to make a decision before condition
Is evaluated

« E.g., washing football uniforms and need to get proper detergent
level; need to see after dryer before next load in

* branch instructions

— data hazards: attempt to use item before it is ready

« E.g., one sock of pair in dryer and one in washer; can’t fold until
get sock from washer through dryer

* instruction depends on result of prior instruction still in the
pipeline

« Can always resolve hazards by waiting

2) ~ pipeline control must detect the hazard

— take action (or delay action) to resolve hazards
CS 152 L10 Pipeline Intro (21) Patterson Fall 2003 © UCB

Single Memory is a Structural Hazard

Time (clock cycles)

Load Mem

Instr 1

éMem IReg >\é\l [Mem [Reg

Reg

: Mem :
Instr 3 EI_[Reg >\é\| : [Mem ,r' Reg | i

2etection is easy in this case! (right half highlight means read, left half write)

éMem_:[Reg >\é\l

Instr 2

=~ 0 Q=0

vinstr 4

gMem_i:

CS 152 L10 Pipeline Intro (22) Patterson Fall 2003 © UCB

Structural Hazards limit performance

« Example: if 1.3 memory accesses per
instruction and only one memory access
per cycle then
—average CPI > 1.3
— otherwise resource is more than 100%

utilized

* One Structural Hazard solution: more
resources
— Instruction cache and Data cache

ﬂ CS 152 L10 Pipeline Intro (23) Patterson Fall 2003 © UCB

Control Hazard Solution #1: Stall

S ~ 0 3> ~

S~ ®© Q=0

(

Time (clock cycles)

Mem

Load

§Reg§

Beq

Add

\4

:| Mem

Stall: wait until decision is clear

Impact: 2 lost cycles (i.e. 3 clock cycles for Beq
instruction above) => slow

Move decision to end of decode
— save 1 cycle per branch, may stretch clock cycle

CS 152 L10 Pipeline Intro (24)

|Mem |T_ Reg

Patterson Fall 2003 © UCB

Control Hazard So

ution #2: Predict

Time (clock cycles)

[
n

S

‘| Add
r.

o

.~ |Beq

d

° | Load

v

(

Mem

Reg

: |Reg

>E| E{Mem :

:| Mem

N

Reg

Reg

: [Mem

§Reg§

Predict: guess one direction then back up if wrong

Impact: 0 lost cycles per branch instruction if guess right, 1 if wrong
(right ~ 50% of time)

— Need to “Squash” and restart following instruction if wrong

— Produce CPlon branchof (1*5+2*.5)=1.5

— Total CPIl might thenbe: 1.5*.2+1* .8 =1.1 (20% branch)

More dynamic schemes: history of branch behavior (~90-99%)

CS 152 L10 Pipeline Intro (25)

Patterson Fall 2003 © UCB

Control Hazard Solution #3: Delayed Branch

Time (clock cycles)

/

n

S

t | Add

r.

0

.~ |Beq

d

° | Misc
Load

v

Mem

§Reg§

:| Mem

gRegg

Ty

! IMem [

Reg

« Delayed Branch: Redefine branch behavior (takes place

after next instruction)

« Impact: 0 clock cycles per branch instruction if can find
instruction to put in “slot” (~50% of time)

Qﬁs 152 L10 Pipeline Intro (26)

s launch more instruction per clock cycle, less useful

Patterson Fall 2003 © UCB

Data Hazard on r1

add r1,r2,r3
sub r4,r1,r3
and r6,r1,r7
or r8,r1,r9

xor r10,r1,r11

ﬂ CS 152 L10 Pipeline Intro (27) Patterson Fall 2003 © UCB

Data Hazard on r1:

* Dependencies backwards in time are hazards

Time (clock cycles)

add r1,r2,r3 Im

sub r4,r1,r3

and r6,r1,r7

=~ 0 Q=0

or r8,r1,r9

xor r10,r1,r11

\4

Q CS 152 L10 Pipeline Intro (28) Patterson Fall 2003 © UCB

Data Hazard Solution:

» “Forward” result from one stage to another

Time (clock cycles)

IF
| add r1,r2,r3 Im
n
S
t |subrd,ri,r3
r.
O |and r6,r1,r7
.
d H
. s
. lor r8,r1,r9 ; 5
* “or” OK if define read/write propérly
xor r10,r1,r11 . : :
v

ﬂ CS 152 L10 Pipeline Intro (29)

i Im

Patterson Fall 2003 © UCB

Forwarding (or Bypassing): What about Loads?

* Dependencies backwards in time are hazards

Time (clock cycles)

Iw r1,0(r2) m |

sub r4,r1,r3

\4

- Can’t solve with forwarding:
* Must delay/stall instruction dependent on loads

ﬂ CS 152 L10 Pipeline Intro (30) Patterson Fall 2003 © UCB

Forwarding (or Bypassing): What about Loads

* Dependencies backwards in time are hazards

\4

Q CS 152 L10 Pipeline Intro (31)

Time (clock cycles)

Iw r1,0(r2)

sub r4,r1,r3

- Can’t solve with forwarding:

IF

Im

Ex

T ID/RF§ EX |
: Reg ;I_I

* Must delay/stall instruction dependent on loads

Patterson Fall 2003 © UCB

Control and_Datapath: Split state diag.into 5 |eces

lll

IR <- Mem[PC]; PC <- PC+4;

: | s<A+B; S <~ A or ZX; S<-A+SX; S<-A+SX; If Cond
. PC < PC+SX .
E l l M <- Mem[S] Mem[S] <-B E
T R[r{] <~ S: R[rd] <= M; =
. S -
... E. | | | | | | EEEEEEEEER L I | EEEEEEEEEEER EEER | | L I | -’
Ll
-
A > D o
e fohs] 8 |2 [£2 BNy &
Fle 2T € |& —»| W \A 4
: =1 1] B
Z =

ﬂ] :
CS 152 L10 Pipeline Intro (32) Patterson Fall 2003 © UCB

Pipelined Processor (almost) for slides

Valid
| 4 N\ 4 N1)
= = X _ c =
T2 |E> 8 g8 |g|r S
7 J I |E 5
\E//\ Qo AN \ =
I N

<

P
Next PC
J
PC |
|
Reg
File
p @ b >
Exec
%)

* What happens if we start a new instruction

nge ry cycle?
CS 152 L10 Pipeline Intro (33)

Patterson Fall 2003 © UCB

Pipelined Datapath (as in book); hard to read

St
|
3
i
g
'
.;

T
M L
- i1
Puad
M i ol T 41 Lamr =
-“ i Pl . o ” L LU
5 u—-l__ e " ra shira """'"'._._._—i
] Culm
w-l- u
" a bl
LT T
dala
Ll L=
b || a
o

ﬂ CS 152 L10 Pipeline Intro (34) Patterson Fall 2003 © UCB

Pipelining the Load Instruction
ECycIe1 éCycIeZ éCycIe3 éCycIe4 éCycIe5 éCycIeG éCycIe?

Clock | | | I I I I I

1st Iw Ifetch IReg/DecI Exec I Mem I Wr

2nd Iw Ifetch IReg/DecI Exec I Mem I Wr

3rd Ilw Ifetch IReg/DecI Exec I Mem I Wr

* The five independent functional units in the
pipeline datapath are:
— Instruction Memory for the Ifetch stage

— Register File's Read ports (bus A and busB) for the
Reg/Dec stage

— ALU for the Exec stage
— Data Memory for the Mem stage
— Register File's Write port (bus W) for the Wr stage

CS 152 L10 Pipeline Intro (35) Patterson Fall 2003 © UCB

The Four Stages of R-type

Cycle 1 §CycIeZ Cycle 3 §Cyc|e4

R-type Ifetch IReg/DecI Exec I Wr

« Ifetch: Instruction Fetch
— Fetch the instruction from the Instruction Memory

* Reg/Dec: Registers Fetch and Instruction
Decode

* EXec:
— ALU operates on the two register operands
— Update PC

« Wr: Write the ALU output back to the register file

ﬂ CS 152 L10 Pipeline Intro (36) Patterson Fall 2003 © UCB

Pipelining the R-type and Load Instruction

: Cycle1 :Cycle2 : Cycle3 :Cycle4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Clock | | | | | | | | |

R-type | Ifetch IReg/Dec I Exec I Wr OOPS!S We hav?a prObI;em!

R-type Ifetch IReg/DecI Exec I Wr A
Load Ifetch IReg/DecI Exec I Mem I/\Wr

R-type Ifetch IReg/DecI Exec

Wr

R-type Ifetch IReg/DecI Exec I Wr

* We have pipeline conflict or structural
hazard:

— Two instructions try to write to the register file
at the same time!

— Only one write port

CS 152 L10 Pipeline Intro (37) Patterson Fall 2003 © UCB

Important Observation

« Each functional unit can only be used once per
iInstruction

« Each functional unit must be used at the same
stage for all instructions:

— Load uses Register File’s Write Port during
its 5th stage : 2 3 4 5

Load Ifetch IReg/DecI Exec I Mem I Wr

— R-type uses Register File’'s Write Port during
its 4th stage : 2 : :

R-type Ifetch IReg/DecI Exec I Wr

> 2 ways to solve this pipeline hazard.

ﬂ CS 152 L10 Pipeline Intro (38) Patterson Fall 2003 © UCB

Solution 1: Insert “Bubble” into the Pipeline

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Clock | I I I I I I I I I

Ifetch IReg/DecI Exec I Wr

Load Ifetch IReg/DecI Exec I Mem I Wr

R-type Ifetch IReg/DecI Exec Wr

Ifetch IReg/Dec Pipeline | Exec I Wr

|
R-type Ifetch Bubble Reg/DecI Exec I Wr
Ifetch IReg/Dec I Exec

* |nsert a “bubble” into the pipeline to prevent 2
writes at the same cycle

— The control logic can be complex.
— Lose instruction fetch and issue opportunity.

No instruction is started in Cycle 6!

R-type

G/

CS 152 L10 Pipeline Intro (39) Patterson Fall 2003 © UCB

Solution 2: Delay R-type’s Write by One Cycle

* Delay R-type’s register write by one cycle:

— Now R-type instructions also use Reg File’s write port
at Stage 5 1 2 3 4 5

R-type Ifetch IReg/DecI Exec ||: Mem_]l Wr

— Mem stage is a NOP stage: nothing is being done.

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9

Clock | I I I I I I I I I

R-type Ifetch IReg/DecI Exec I Mem I Wr

R-type Ifetch IReg/DecI Exec I Mem I Wr

Load Ifetch IReg/DecI Exec I Mem I Wr

R-type Ifetch IReg/DecI Exec I Mem I Wr

R-type Ifetch IReg/DecI Exec I Mem I Wr

ﬂ CS 152 L10 Pipeline Intro (40) Patterson Fall 2003 © UCB

The Four Stages of Store => 5 stages

Cycle 1 §CycIeZ Cycle 3 §Cyc|e4

Store Ifetch IReg/DecI Exec I Mem || Wr

e |fetch: Instruction Fetch

— Fetch the instruction from the Instruction
Memory

* Reg/Dec: Registers Fetch and Instruction
Decode

« Exec: Calculate the memory address
 Mem: Write the data into the Data Memory

ﬂ CS 152 L10 Pipeline Intro (41) Patterson Fall 2003 © UCB

The Three Stages of Beq => 5 stages

Cycle 1 §CycIeZ Cycle 3 §Cyc|e4

Beq | Ifetch IReg/DecI Exec || Mem || Wr

« Ifetch: Instruction Fetch
— Fetch the instruction from the Instruction Memory

« Reg/Dec:

— Registers Fetch and Instruction Decode

* Exec:
— compares the two register operand,

— select correct branch target address
— latch into PC

ﬂ CS 152 L10 Pipeline Intro (42) Patterson Fall 2003 © UCB

o~ wWN =

(

Peer Instruction

Clock

Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

1st lw

Ifetch IReg/DecI Exec I Mem1 I Mem2 I Wr

—

2nd Ilw

Ifetch IReg/DecI Exec I Mem1 I Mem2 I Wr

3rd Iw

Ifetch IReg/DecI Exec I Mem1 I Mem2 I Wr

Suppose a big (overlapping) data cache results in a data
cache latency of 2 clock cycles and a 6-stage pipeline. What
Is the impact?
Instruction bandwidth is now 5/6-ths of the 5-stage pipeline
Instruction bandwidth is now 1/2 of the 5-stage pipeline

CS 152 L10 Pipeline Intro (43)

. The branch delay slot is now 2 instructions
. The load-use hazard can be with 2 instructions following load
. Both 3 and 4: branch delay and load-use now 2 instructions

6. None of the above

Patterson Fall 2003 © UCB

o O b WIN -

Peer Instruction

Clock

Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

1st lw

Ifetch1 I Ifetch2 IRengecI Exec I Mem

Wr

—

Suppose a big (overlapping) | cache results in a I‘cache
latency of 2 clock cycles and a 6-stage pipeline. What is the
impact?

. Instruction bandwidth is now 5/6-ths of the 5-stage pipeline
. Instruction bandwidth is now 1/2 of the 5-stage pipeline

. The branch delay slot is now 2 instructions
. The load-use hazard can be with 2 instructions following load
. Both 3 and 4: branch delay and load-use now 2 instructions

. None of the above

ﬂ CS 152 L10 Pipeline Intro (44)

Patterson Fall 2003 © UCB

O B~ WDN -

ﬂ 7. None of the above
CS 152 L10 Pipeline Intro (45)

Peer Instruction

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

—

Clock | I I I I I

1st addl Ifetch IReg/Dec I Exec I Mem/Wr

2nd Iw Ifetch IRengecI Exec I Mem Wr

3rd add | Ifetch IRengecI Exec I Mem/Wr

Suppose we use with a 4 stage pipeline that combines
memory access and write back stages for all instructions but
load, stalling when there are structural hazards. Impact?

. The branch delay slot is now 0 instructions

. Every load stalls since it has a structural hazard

. Every store stalls since it has a structural hazard

. Both 2 & 3: loads & stores stall due to structural hazards

. Every load stalls, but there is no load-use hazard anymore

Both 2 & 3, but there is no load-use hazard anymore

Patterson Fall 2003 © UCB

Designing a Pipelined Processor

* Go back and examine your datapath and
control diagram

 Associate resources with states

* Ensure that backwards flows do not
conflict, or figure out how to resolve

» Assert control in appropriate stage

ﬂ CS 152 L10 Pipeline Intro (46) Patterson Fall 2003 © UCB

Summary: Pipelining

Reduce CPI by overlapping many instructions
— Average throughput of approximately 1 CPI with fast clock

Utilize capabilities of the Datapath

— start next instruction while working on the current one
— limited by length of longest stage (plus fill/flush)

— detect and resolve hazards

What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

ﬂ CS 152 L10 Pipeline Intro (47) Patterson Fall 2003 © UCB

