CS152 — Computer Architecture and
Engineering

Lecture 11 — Pipeline Control
2003-09-29

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

@ £S 152 L11 Pipeline 2 (1) Patterson Fall

Recap: Ideal Pipelining

Assume instructions
are completely independent!

[F | ocolex | wmem[we |
[F [pco[ex [wmem[ws]
[F [pcolex [wmem]|ws]
[F [ocolex [mem[we |
[F [ocolex [wem[ws]

Maximum Speedup < Number of stages

Speedup<-Time-for-unpipelined operation

Time for longest stage
Example: 40ns data path, 5 stages, Longest stage is 10 ns, Speedup <4

@ £S 152 L11 Pipeline 2(3)

Patterson Fall 2003 0 ucs|

MIPS R3000 Instruction Pipeline

‘Inst Fetch | Decode H ALU | EA | Memory | Write Reg ‘
Reg. Read

‘TLB ‘ I-Cache ‘ RF ‘ Operation\ ‘ WB‘
‘ E.A.‘ TLB‘ D-Cache ‘

Resource Usage

Write in phase 1, read in phase 2 => eliminates bypass from WB

@ £S 152 L11 Pipeline 2 (5)

Patterson Fall 2003 0 ucs|

Review: Pipelining
» Reduce CPI by overlapping many instructions
— Average throughput of approximately 1 CPI with fast clock
» Utilize capabilities of the Datapath
— start next instruction while working on the current one
— limited by length of longest stage (plus fill/flush)
— detect and resolve hazards
* What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores

* What makes it hard?
— structural hazards: suppose we had only one memory
— control hazards: need to worry about branch instructions
— data hazards: an instruction depends on a previous instruction

@ CS 152 L11 Pipeline 2 (2) Patterson Fall

FYI: MIPS R3000 clocking discipline

phi1 ’—‘ ’—‘ ’—‘ ’—‘
phi2 [[
« 2-phase non-overlapping clocks
* Pipeline stage is two (level sensitive)

(00t 10101

Edge-triggered

|@ CS 152 L11 Pipeline 2 (4)

Patterson Fali 2003 o ucs|

Recall: Data Hazard on r1

Time (clock cycles)
, |add r1,r2,r3 @

% sub r4,r1,r3

; and r6,r1,r7

4 lor r8,r1,r9

: xor r10,r1,r11 @7

With MIPS R3000 pipeline, no need to forward from WB stage

CS 152 L11 Pipeline 2 (6)

Patterson Fali 2003 o ucs|

Clarification about clock edges in lab4!

Valid

v
Inst. Mem
v

Next

et

« Since Register have edge-triggered write:
— Must have everything set up at end of memory stage
— This means that “M” register here is not necessary!

« Also, Memories will be synchronous

@ Need to setup addresses and values in advance

£S 152 L11 Pipeline 2 (7) Patterson Fall

Recall; Single cycle control!

Instruction Control Signals Conditions

Memory Ey s e T 1 R N RN, & N ’
Rd| Rs| Rt
Y 51y 5 5
— ~lnstruction f_ _ _ _ 4 e A R A L
~

A Data
Rw Ra Rb 32 Data
v Addres] rdeal | Out

32 32-bit : Data |—

Registers | Dath Memory

I >\
|

Clk? - ! cuf

! !
|

Kdeal ! Control !
! i

.

’ Address

@ £S 152 L11 Pipeline 2(9)

Patterson Fall 2003 0 ucs|

Datapath + Data Stationary Control

Decode

@ £S 152 L11 Pipeline 2 (11)

Patterson Fall 2003 ucs|

MIPS R3000 Multicycle Operations

1
op Rd Ra Rb

mul Rd Ra Rb

Use control word of local stage to
step through multicycle operation

Stall all stages above multicycle
operation in the pipeline

Drain (bubble) stages below it

Alternatively, launch multiply/divide
.m to autonomous unit, only stall pipe if
attempt to get result before ready

- This means stall mflo/mfhi in
decode stage if multiply/divide still
executing

- Extra credit in Lab 5 does this

: Multiply, Divide, Cache Miss

£S 152 L11 Pipeline 2 (8) Patterson Fall

Data Stationary Control

* The Main Control generates the control signals during Reg/Dec
— Control signals for Exec (ExtOp, ALUSrc, ...) are used 1 cycle later
— Control signals for Mem (MemWr Branch) are used 2 cycles later
— Control signals for Wr (MemtoReg MemWr) are used 3 cycles later

Reg/Dec : B Exec : B Mem : i Wr
T T T g
I | I
ExtOp Seh ExtOj
ALUSrc ALUSrc =
- ALUOp |=| ALuUOp £ =
2 Main g » = 3
<] RegDst o3[RegDst 3 >
= Control “ g g
Hing MemW |7 Memw z o
z Branch Z'| Branch z 12
E 5 g E
M R MemtoReg = | MemtoReg
RegWr RegWr RegWr
L L

CS 152 L11 Pipeline 2 (10)

Patterson Fali 2003 o ucs|

Administrivia
Lab 4 Project document Thursday 9 PM
paper or email
Reading Chapter 6, sections 6.1 to 6.5
Midterm Wed Oct 8 5:30 - 8:30 in 1 LeConte
— Midterm review Sunday Oct 4, 5 PM in 306 Soda
— Bring 1 page, handwritten notes, both sides
— Meet at LaVal's Northside afterwards for Pizza
« Office hours

— Mon 4 - 5:30 Jack, Tue 3:30-5 Kurt,
Wed 3 — 4:30 John, Thu 3:30-5 Ben

ﬁ’gﬁ— Dave’s office hours Tue 3:30 - 5

Patterson Fali 2003 0 ucs|

Let’'s Try it Out

10 Iw r1, r2(35)

14 addl r2,r2,3

20 sub r3,r4,r5

24 beq r6,r7,100

30 ori r8,r9, 17 these addresses are octal
34 add r10,r11,r12

100 and r13,r14,15

@ £S 152 L1 Pipoline 2 (13)

Patterson Fall

Fetch 14, Decode 10

Inst. Mem

—>
-
WB
Mem
Ciil Ctrl

«—]|
| —|

Iw

1, r2(35)

addl

r2,r2,3

sub

beq
30 ori

@ £S 152 L11 Pipeline 2 (15)

34 add

100 and

r3,r4,r5

6, r7, 100
r8, 19,17
r10, r11, r12

r13,r14, 15

Inst. Mem
T |sub r3, r4, r!

Fetch 24 Decode 20, Exec 14, Mem 10

Mem
Ctrl

10 Iw

1, 12(35)

14 addl

r2,r2,3

20 sub

3, 14,15

24"beq 16,7, 100

30 ori

@ £S 152 L11 Pipeline 2 (17)

O
o

34 add

100 and

r8, 19,17
r10, r11, r12

r13, r14, 15

Start Fetch 10

Mem
Ctrl

Inst. Mem

@ CS 152 L11 Pipeline 2 (14)

>
wB

Ctrl

Reg.
File

1, r2(35)

100 and

r2,r2,3

r3, rd, r5

6, r7, 100
8, 19,17
r10, r11, r12

r13,r14,15

Fetch 20 Decode 14, Exec 10

T

Inst. Mem

(6]
o

CS 152 L11 Pipeline 2 (16)

—>
WB

Ctrl

File

Iw

r1, r2(35)

addl

r2,r2,3

100

sub
beq
ori

add

and

r3, r4, r5

r6, r7, 100
8, 19,17
r10, r11, r12

13, r14,15

Mem
Ctrl

Inst. Mem

Iwr1

e Delayed Branch: always execute ori after beq
CS 152 L11 Pipoline 2(18)

-etch 30, Dcd 24 Ex 20, Mem 14, WB 10

B[T0 w1, r2(35)

M(14

addl

12,r2,3

EX] 20
D] 24

ub.
beq

13,14, 15

6, r7, 100

IFi| 30

ori

18,19, 17

34

100

add

and

r10, r11, r12

13, r14,15

Fetch 100, Ded 30, Ex 24, Mem 20, WB 14

~
£zl (o -
4 < B ——— N
= 5 Q Q@ —>
© 2 =
e 8 a M 2 wB
[%] = 3
| 2|5 o > @ em | s Ctrl
o
®
+
- N
gel =
i 1]

10 W rl,r2(35)

14 addl r2,r2,3

20 sub r3.r4 r5

24 . hen. r6. r7.100

30..0r...r8.r9.17

O 34 add r10,r11,r12
o

IFi|l 100_and_ r13.r14. 15
CS 152 L11 Pipeline 2 (19)

Fetch 110, Dcd 104, Ex 100, Mem 30, WB 24

5 —
2 WB
B Mem
| £ Cirl Ctrl
g
i

10w, r2(35)
14 addl 12,12,3

Next PC

34 add r10,r11,r12

N 20 sub r3,r4,15
WB| 24 beq 16, r7, 100
Mlao o o7 I
(&)
a

Fjll it in yourself!
EX| 100 and r13,r14,15
CS 152 L11 Pipeline 2 21)

Pipelined Processor

Bubbles >

Equal

Next PC

 Separate control at each stage
« Stalls propagate backwards to freeze previous stages
» Bubbles in pipeline introduced by placing “Noops” into local

sfage, stall previous stages.
o5 152 111 Pipsine 229

Patterson Fall 2003 ucs|

Fetch 104, Dcd 100, Ex 30, Mem 24, WB 20

£ —>
o
= > WB
3 Mem
> £ Ctdl Ctrl
]
xic

10w, r2(35)
14 addl r2,r2,3

WB{20 sub 13,14, 15
M([24 beq 16,r7, 100
EX.30.. ori....18.19,17

C
w
R

add r10, r11, r12

Fjll it in yourself!
1D 100 and 113, r14, 15
CS 152 L11 Pipeline 2 (20)

etch 114, Dcd 110, Ex 104, Mem 100, WB 30

5 |

= ? >

3 Mem w8

~ £ Ciel Ctrl

g o
i
10 W rl,r2(35)
14 addl r2,r2,3

20 sub r3,r4, 15

24 beq 16,17, 100
WB| 30 ori r8.19.17

34 add r10,r11,r12

- a
Ejll it in yourself!
M 100 and r13,r14, 15
£ 152 L11 Pipoline 2 22

Recap: Data Hazards

» Avoid some “by design”
—eliminate WAR by always fetching operands early (DCD) in
pipe
—eleminate WAW by doing all WBs in order (last stage, static)
« Detect and resolve remaining ones
—stall or forward (if possible)

[F | pco] Ex |Mem[ws_| RAW Data Hazard
[IF [oco EX [Mem [ws]
nm WAW Data Hazard
DCD N/ oF[ex] wen
EBE‘ YAR Data Hazard

CS 152 L11 Pipeline 2 (24)

Patterson Fali 2003 0 ucs|

Hazard Detection

« Suppose instruction i is about to be issued and a predecessor instruction
J is in the instruction pipeline.

Window on execution:
Only pending instructions can
cause exceptions

Instruction
Movement:
v =S
* A RAW hazard exists on register p if p € Rregs(i) N Wregs(j)
—Keep a record of pending writes (for inst's in the pipe) and compare
with operand regs of current instruction.
—When instruction issues, reserve its result register.
—When on operation completes, remove its write reservation.
« AWAW hazard exists on register p if p € Wregs(i) nWregs(j)
+ AWAR hazard exists on register p if p € Wregs(i) n Rregs(j)

@ £S 152 L11 Pipeline 2 (25) Patterson Fall

Resolve RAW by “forwarding” (or bypassing)

IAU

* Detect nearest
valid write op
operand register
and forward into
op latches,
bypassing
remainder of the
pipe

« Increase muxes to
add paths from
pipeline registers

* Data Forwarding =
Data Bypassing

e g

£S 152 L11 Pipeline 2 (27 Patterson Fall 2003 0 ucs|

Compiler Avoiding Load Stalls:

gee
spice

tex

0% 20% 40% 60% 80%

% loads stalling pipeline

@ £S 152 L11 Pipeline 2 (29

Patterson Fall 2003 ucs|

Record of Pending Writes In Pipeline Registers

Current operand registers
/ Pending writes
2 hazard <=
((rs ==rw,, ®W,,)
OR

((rs == rw,,,,, & regW,,,)
OR

((rs == rw,,;,, ®W,,)
OR

& regW,,)

ox)

((rt == rw,
OR

((rt == rWom) & regWp,,)
OR

w] ‘ ((rt==rw,,) ®W,,)
CS 152 L11 Pipeline 2 (26) Patterson Fall

What about memory operations?
° If instructions are initiated in order and |
operations always occur in the same stage, op Rd Ra Rb
there can be no hazards between memory
operations!

° What does delaying WB on arithmetic
operations cost? t?

- cycles ? op Rd Ra Rb
— hardware ?

° What about data dependence on loads? 1
R1<-R4+R5 \ 7
R2 <-Mem[R2 +1] Rd D R
R3<-R2+R1
= “Delayed Loads” m
° Can recognize this in decode stage and pall
introduce bubble while stalling fetch stage

(hint for lab 5!)

° Tricky situation:
R1<-Mem[R2 +1]

Mgm[R3+34] <- R1
Handle with bypass in memory stage!
CS 152 L11 Pipoline 228

toreg
file

Patterson Fali 2003 o ucs|

Question: Critical Path???

* Bypass path is invariably
trouble

* Options?
—Make logic really fast

—Move forwarding after
muxes

* Problem: screws up
branches that require
forwarding!

» Use same tricks as “carry-
skip” adder to fix this?

« This option may just push

Is CPI = 1 for our pipeline?

* Remember that CPI is an “Average # cycles/inst

‘IFetch“Dcd |Exec |Mem H wB \

‘\Fetch|Dcd |E><ec HMem |WB \

‘IFetch|Dcd HExec |Mem |va \

‘IFetchHDcd |Exec |Mem H wB \

* CPI here is 1, since the average throughput is 1
instruction every cycle.

* What if there are stalls or multi-cycle execution?
* Usually CPI > 1. How close can we get to 1??

@ £S 152 L1 Pipeline 2 (31)

Patterson Fall

Case Study: MIPS R4000 (200 MHz)

« 8 Stage Pipeline:

— IFfirst half of fetching of instruction; PC selection happens here
as well as initiation of instruction cache access.

— IS—second half of access to instruction cache.

— RF—-instruction decode and register fetch, hazard checking and
also instruction cache hit detection.

— EX-execution, which includes effective address calculation,
ALU operation, and branch target computation and condition
evaluation.

— DF—data fetch, first half of access to data cache.

— DS-second half of access to data cache.

— TC—tag check, determine whether the data cache access hit.

— WB-write back for loads and register-register operations.

« 8 Stages:

hat is impact on Load delay? Branch delay? Why?
£5 152 41 Pipsine 239 pattrson Fan 2003 0 uca|

MIPS R4000 Floating Point

« FP Adder, FP Multiplier, FP Divider
« Last step of FP Multiplier/Divider uses FP Adder HW

» 8 kinds of stages in FP units:
Stage Functional unit Description

A FP adder Mantissa ADD stage

D FP divider Divide pipeline stage

E FP multiplier Exception test stage

M FP multiplier First stage of multiplier

N FP multiplier ~ Second stage of multiplier
R FP adder Rounding stage

S FP adder Operand shift stage

U Unpack FP numbers

@ £S 152 L11 Pipeline 2 (35)

Patterson Fall 2003 ucs|

Recall: Compute CPI?

« Start with Base CPI
* Add stalls
cei=crl,,+CPI,

base

CPI,, = STALL

type—

» Suppose:
— CPly,e=1
— Freqyancn=20%, freq, ,q=30%
— Suppose branches always cause 1 cycle stall
— Loads cause a 100 cycle stall 1% of time

« Then: CPI = 1 + (1x0.20)+(100 x 0.30x0.01)=1.5

* Multicycle? Could treat as:
CPlstallz(CYCLES'CPIbase) x freqinst

@ CS 152 L11 Pipeline 2(32)

X freq,,,+STALL,,, ,x freq,,, ,

Patterson Fall

Unpack FP numbers
|@ £5152 L11 Pipoline 2 36)

Case Study: MIPS R4000
TWO Cycle IF Is RF EX DF wB
Load Latency IF IS RF EX TC
IF IS RF bs
IF 1Is DF
IF EX
RF
Is
IF
THREE Cycle IF 1s RF EX DF Ds Tc we
Branch Latency IF IS RF\ EX DF DS TC
(conditions evaluated IF IS\ RF EX DF DS
during EX phase) IF VIS RF EX DF
IS RF EX
Delay slot plus two stalls IF IS RF
Branch likely cancels delay slot if not taken IF Is
IF
MIPS FP Pipe Stages
FP Instr 1 2 3 4 5 6 7 8
Add, Subtract U S+A A+RR+S
Multiply UEtMM M M N N+AR
Divide Uu A R D= D+A D+R, D+R, D+A, D+R, A,
R
Square root U E (A+R)%® ... A R
Negate U s
Absolute value U S
FP compare U A R
Stages: .
M First stage of multiplier '; g.ar.mssa. A’I'?D stage
N Second stage of multiplier ivide f"p eline stage
) E Exception test stage
R Rounding stage
S Operand shift stage
U

Patterson Fali 2003 0 ucs|

@

R4000 Performance

« Not ideal CPI of 1:
— FP structural stalls: Not enough FP hardware (parallelism)
: RAW data hazard (latency)
— Branch stalls (2 cycles + unfilled slots)
(1 or 2 clock cycles)

4.5

eqniatt

espresso
doduc
nasa?

tomeaty

W 5o B Load stalls B 5ranch sulls O Fp resultstalls

B P structural

stlls

£S 152 L11 Pipeline 2 (37)

Patterson Fall

Summary
* What makes it easy
— all instructions are the same length
— just a few instruction formats
— memory operands appear only in loads and stores
» Hazards limit performance
— Structural: need more HW resources
— Data: need forwarding, compiler scheduling
— Control: early evaluation & PC, delayed branch, prediction
» Data hazards must be handled carefully:
— RAW data hazards handled by forwarding
— WAW and WAR hazards don't exist in 5-stage pipeline
MIPS | instruction set architecture made pipeline visible
(delayed branch, delayed load)
» More performance from deeper pipelines, parallelism

CS 152 L11 Pipeline 2 (38) Patterson Fall

