CS152 – Computer Architecture and Engineering

Lecture 11 – Pipeline Control 2003-09-29

Dave Patterson
(www.cs.berkeley.edu/~patterson)
www-inst.eecs.berkeley.edu/~cs152/

Cal

.. _

Review: Pipelining

- · Reduce CPI by overlapping many instructions
 - Average throughput of approximately 1 CPI with fast clock
- · Utilize capabilities of the Datapath
 - start next instruction while working on the current one
 - limited by length of longest stage (plus fill/flush)
 - detect and resolve hazards
- What makes it easy
- all instructions are the same length
- just a few instruction formats
- memory operands appear only in loads and stores
- · What makes it hard?
 - structural hazards: suppose we had only one memory
 - control hazards: need to worry about branch instructions
 - data hazards: an instruction depends on a previous instruction

Patterson Fall 2003 © LICE

Administrivia

- Lab 4 Project document Thursday 9 PM paper or email
- Reading Chapter 6, sections 6.1 to 6.5
- Midterm Wed Oct 8 5:30 8:30 in 1 LeConte
 - Midterm review Sunday Oct 4, 5 PM in 306 Soda
 - Bring 1 page, handwritten notes, both sides
 - Meet at LaVal's Northside afterwards for Pizza
- Office hours
 - Mon 4 5:30 Jack, Tue 3:30-5 Kurt,
 Wed 3 4:30 John, Thu 3:30-5 Ben
- Dave's office hours Tue 3:30 5

Is CPI = 1 for our pipeline?

• Remember that CPI is an "Average # cycles/inst

- CPI here is 1, since the average throughput is 1 instruction every cycle.
- What if there are stalls or multi-cycle execution?
- Usually CPI > 1. How close can we get to 1??

CS 152 L11 Pipeline 2 (31)

atterson Fall 2003 © U

Recall: Compute CPI?

- · Start with Base CPI
- Add stalls

$$\begin{split} CPI &= CPI_{base} + CPI_{stall} \\ CPI_{stall} &= STALL_{type-1} \times freq_{type-1} + STALL_{type-2} \times freq_{type-2} \end{split}$$

- · Suppose:
 - CPI_{base}=1
 - Freq_{branch}=20%, freq_{load}=30%
 - Suppose branches always cause 1 cycle stall
 - Loads cause a 100 cycle stall 1% of time
- Then: CPI = 1 + (1×0.20) + $(100\times0.30\times0.01)$ =1.5
- · Multicycle? Could treat as:

 $CPI_{stall} = (CYCLES-CPI_{base}) \times freq_{inst}$

CS 152 L11 Pipeline 2 (32)

Bettereen Fell 2003 © LICE

Case Study: MIPS R4000 (200 MHz)

- · 8 Stage Pipeline:
 - IF—first half of fetching of instruction; PC selection happens here as well as initiation of instruction cache access.
 - IS-second half of access to instruction cache.
 - RF-instruction decode and register fetch, hazard checking and also instruction cache hit detection.
 - EX-execution, which includes effective address calculation, ALU operation, and branch target computation and condition evaluation.
 - DF-data fetch, first half of access to data cache.
 - DS-second half of access to data cache.
 - TC-tag check, determine whether the data cache access hit.
 - WB-write back for loads and register-register operations.
- 8 Stages:

What is impact on Load delay? Branch delay? Why?

CS 152 L11 Pipeline 2 (33

Patterson Pail 2003 © U

Case Study: MIPS R4000

TWO Cycle Load Latency	IF	IS IF	RF IS IF	EX RF IS IF	DF EX RF IS IF	DS DF EX RF IS IF	TC DS DF EX RF IS	WB TC DS DF EX RF IS IF
THREE Cycle Branch Latency (conditions evaluated during EX phase) Delay slot plus two : Branch likely cancels		IS IF y slot	RF IS IF	EX RF IS IF	DF EX RF IS IF	DS DF EX RF IS IF	TC DS DF EX RF IS IF	WB TC DS DF EX RF IS IF

Patterson Fall 2003 ©

MIPS R4000 Floating Point

- · FP Adder, FP Multiplier, FP Divider
- · Last step of FP Multiplier/Divider uses FP Adder HW
- · 8 kinds of stages in FP units:

Stage	Functional unit	Description
Α	FP adder	Mantissa ADD stage
D	FP divider	Divide pipeline stage
E	FP multiplier	Exception test stage
M	FP multiplier	First stage of multiplier
N	FP multiplier	Second stage of multiplier
R	FP adder	Rounding stage
S	FP adder	Operand shift stage
U		Unpack FP numbers

Patterson Fall 2003 © UCB

MIPS FP Pipe Stages

FP Instr Add, Subtract U S+A A+R R+S Multiply U E+M M M N N+AR Divide R D²⁸ ... D+A D+R, D+R, D+A, D+R, A, Square root (A+R)108 ... A R U S Negate Absolute value U S FP compare U A Stages: A Mantissa ADD stage First stage of multiplier D Divide pipeline stage Second stage of multiplier E Exception test stage R Rounding stage Operand shift stage Unpack FP numbers

Summary

- What makes it easy
 - all instructions are the same length
 - just a few instruction formats
 - memory operands appear only in loads and stores
- · Hazards limit performance
 - Structural: need more HW resources
 - Data: need forwarding, compiler scheduling
 - Control: early evaluation & PC, delayed branch, prediction
- · Data hazards must be handled carefully:
 - RAW data hazards handled by forwarding
 - WAW and WAR hazards don't exist in 5-stage pipeline
- MIPS I instruction set architecture made pipeline visible (delayed branch, delayed load)
- More performance from deeper pipelines, parallelism

