
1

CS 152 L12 Micrcode, Interrrupts (1) Patterson Fall 2003 © UCB

CS152 – Computer Architecture and
Engineering

Lecture 12 – Control Wrap up:
Microcode, Interrupts, RAW/WAR/WAW

2003-10-02

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

CS 152 L12 Micrcode, Interrrupts (2) Patterson Fall 2003 © UCB

Pipelining Review
• What makes it easy

– all instructions are the same length
– just a few instruction formats
– memory operands appear only in loads and stores

• Hazards limit performance
– Structural: need more HW resources
– Data: need forwarding, compiler scheduling
– Control: early evaluation & PC, delayed branch, prediction

• Data hazards must be handled carefully:
– RAW data hazards handled by forwarding
– WAW and WAR hazards don’t exist in 5-stage pipeline

• MIPS I instruction set architecture made pipeline visible
(delayed branch, delayed load)

• More performance from deeper pipelines, parallelism

CS 152 L12 Micrcode, Interrrupts (3) Patterson Fall 2003 © UCB

Outline

• RAW, WAR, WAW: 2nd Try
• Interrupts and Exceptions in MIPS
• How to handle them in multicycle control?
• What about pipelining and interrupts?
• Microcode: do it yourself microprogramming

CS 152 L12 Micrcode, Interrrupts (4) Patterson Fall 2003 © UCB

• Read After Write (RAW)
InstrJ tries to read operand before InstrI
writes it

• Caused by a “Dependence” (in compiler
nomenclature). This hazard results from an
actual need for communication.

• Forwarding handles many, but not all, RAW
dependencies in 5 stage MIPS pipeline

3 Generic Data Hazards: RAW, WAR, WAW

I: add r1,r2,r3
J: sub r4,r1,r3

CS 152 L12 Micrcode, Interrrupts (5) Patterson Fall 2003 © UCB

• Write After Read (WAR)
InstrJ writes operand before InstrI reads it

• Called an “anti-dependence” by compiler writers.
This results from “reuse” of the name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Reads are always in stage 2, and
– Writes are always in stage 5

I: sub r4,r1,r3
J: add r1,r2,r3
K: mul r6,r1,r7

3 Generic Data Hazards: RAW, WAR, WAW

CS 152 L12 Micrcode, Interrrupts (6) Patterson Fall 2003 © UCB

• Write After Write (WAW)
InstrJ writes operand before InstrI writes it.

• Called an “output dependence” by compiler writers
This also results from the “reuse” of name “r1”.

• Can’t happen in MIPS 5 stage pipeline because:
– All instructions take 5 stages, and
– Writes are always in stage 5

• Can see WAR and WAW in more complicated pipes

I: sub r1,r4,r3
J: add r1,r2,r3
K: mul r6,r1,r7

3 Generic Data Hazards: RAW, WAR, WAW

2

CS 152 L12 Micrcode, Interrrupts (7) Patterson Fall 2003 © UCB

Recap:“Macroinstruction” Interpretation

Main
Memory

execution
unit

control
memory

CPU

ADD
SUB
AND

DATA

.

.

.

User program
plus Data

this can change!

AND microsequence

e.g., Fetch
Calc Operand Addr
Fetch Operand(s)
Calculate
Save Answer(s)

one of these is
mapped into one
of these

CS 152 L12 Micrcode, Interrrupts (8) Patterson Fall 2003 © UCB

Exceptions

• Exception = unprogrammed control transfer
– system takes action to handle the exception

• must record the address of the offending instruction
• record any other information necessary to return afterwards

– returns control to user
– must save & restore user state

• Allows constuction of a “user virtual machine”

normal control flow:
sequential, jumps, branches, calls, returns

user program System
Exception
HandlerException:

return from
exception

CS 152 L12 Micrcode, Interrrupts (9) Patterson Fall 2003 © UCB

Two Types of Exceptions: Interrupts and Traps
• Interrupts

– caused by external events:
• Network, Keyboard, Disk I/O, Timer

– asynchronous to program execution
• Most interrupts can be disabled for brief periods of time
• Some (like “Power Failing”) are non-maskable (NMI)

– may be handled between instructions
– simply suspend and resume user program

• Traps
– caused by internal events

• exceptional conditions (overflow)
• errors (parity)
• faults (non-resident page)

– synchronous to program execution
– condition must be remedied by the handler
– instruction may be retried or simulated and program continued or

program may be aborted

CS 152 L12 Micrcode, Interrrupts (10) Patterson Fall 2003 © UCB

Precise Exceptions
• Precise ⇒ state of the machine is preserved as if program executed up

to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as if they have not

even started
– Same system code will work on different implementations
– Difficult in the presence of pipelining, out-ot-order execution, ...
– MIPS takes this position

• Imprecise ⇒ system software has to figure out what is where and put it
all back together

• Performance goals often lead designers to forsake precise interrupts
– system software developers, user, markets etc. usually wish they had not

done this

• Modern techniques for out-of-order execution and branch prediction
help implement precise interrupts

CS 152 L12 Micrcode, Interrrupts (11) Patterson Fall 2003 © UCB

Big Picture: user / system modes
• Two modes of execution (user/system) :

– operating system runs in privileged mode and has access to all of
the resources of the computer

– presents “virtual resources” to each user that are more convenient
that the physical resources

• files vs. disk sectors
• virtual memory vs physical memory

– protects each user program from others
– protects system from malicious users.
– OS is assumed to “know best”, and is trusted code, so enter system

mode on exception
• Exceptions allow the system to taken action in response to

events that occur while user program is executing:
– Might provide supplemental behavior (dealing with denormal floating-

point numbers for instance).
– “Unimplemented instruction” used to emulate instructions that were

not included in hardware

CS 152 L12 Micrcode, Interrrupts (12) Patterson Fall 2003 © UCB

Addressing the Exception Handler

• Traditional Approach: Interrupt Vector
– PC <- MEM[IV_base + cause || 00]
– 370, 68000, Vax, 80x86, . . .

• RISC Handler Table
– PC <– IT_base + cause || 0000
– saves state and jumps
– Sparc, PA, M88K, . . .

• MIPS Approach: fixed entry
– PC <– EXC_addr
– Actually very small table

• RESET entry
• TLB
• other

iv_base
cause

handler
code

iv_base
cause

handler entry code

3

CS 152 L12 Micrcode, Interrrupts (13) Patterson Fall 2003 © UCB

Saving State

• Push it onto the stack
– Vax, 68k, 80x86

• Shadow Registers
– M88k
– Save state in a shadow of the internal

pipeline registers
• Save it in special registers

– MIPS EPC, BadVaddr, Status, Cause

CS 152 L12 Micrcode, Interrrupts (14) Patterson Fall 2003 © UCB

Additions to MIPS ISA to support Exceptions?
• Exception state is kept in “coprocessor 0”.

– Use mfc0 read contents of these registers
– Every register is 32 bits, but may be only partially defined
BadVAddr (register 8)
– register contained memory address at which memory reference occurred
Status (register 12)
– interrupt mask and enable bits
Cause (register 13)
– the cause of the exception
– Bits 6 to 2 of this register encodes the exception type (e.g undefined

instruction=10 and arithmetic overflow=12)
EPC (register 14)
– address of the affected instruction (register 14 of coprocessor 0).

• Control signals to write BadVAddr, Status, Cause, and EPC
• Be able to write exception address into PC (8000 0180hex)
• May have to undo PC = PC + 4, since want EPC to point to offending

instruction (not its successor): PC = PC - 4

CS 152 L12 Micrcode, Interrrupts (15) Patterson Fall 2003 © UCB

Details of Status register: MIPS I

• Mask = 1 bit for each of 5 hardware and 3 software
interrupt levels
– 1 => enables interrupts
– 0 => disables interrupts

• k = kernel/user
– 0 => was in the kernel when interrupt occurred
– 1 => was running user mode

• e = interrupt enable
– 0 => interrupts were disabled
– 1 => interrupts were enabled

• When interrupt occurs, 6 LSB shifted left 2 bits, setting 2
LSB to 0
– run in kernel mode with interrupts disabled

Status
15 8 5 4 3 2 1 0

k e k e k eMask

old
prev

current

CS 152 L12 Micrcode, Interrrupts (16) Patterson Fall 2003 © UCB

Details of Status register: MIPS 32

• Mask = 1 bit for each of 5 hardware and 3 software
interrupt levels
– 1 => enables interrupts
– 0 => disables interrupts

• mode = kernel/user
– 0 => was in the kernel when interrupt occurred
– 2 => was running user mode
– (added 1 for “supervisor” state)

• e = interrupt enable
– 0 => interrupts were disabled
– 1 => interrupts were enabled

Status
15 8 3 2 1 0

mode eMask

CS 152 L12 Micrcode, Interrrupts (17) Patterson Fall 2003 © UCB

Details of Cause register

• Pending interrupt 5 hardware levels: bit set if interrupt occurs but not yet
serviced
– handles cases when more than one interrupt occurs at same time, or

while records interrupt requests when interrupts disabled
• Exception Code encodes reasons for interrupt

– 0 (INT) => external interrupt
– 4 (ADDRL) => address error exception (load or instr fetch)
– 5 (ADDRS) => address error exception (store)
– 6 (IBUS) => bus error on instruction fetch
– 7 (DBUS) => bus error on data fetch
– 8 (Syscall) => Syscall exception
– 9 (BKPT) => Breakpoint exception
– 10 (RI) => Reserved Instruction exception
– 12 (OVF) => Arithmetic overflow exception

Status
15 10

Pending
6 2

Code

CS 152 L12 Micrcode, Interrrupts (18) Patterson Fall 2003 © UCB

Part of the handler in trap_handler.s
.ktext 0x80000080

entry: ⇐ Exceptions/interrupts come here
.set noat

move $k1 $at # Save $at
.set at

sw $v0 s1 # Not re-entrent and we can't trust $sp
sw $a0 s2
mfc0 $k0 $13 # Cause ⇐ Grab the cause register
li $v0 4 # syscall 4 (print_str)
la $a0 __m1_
syscall
li $v0 1 # syscall 1 (print_int)

srl $a0 $k0 2 # shift Cause reg
syscall

ret: lw $v0 s1
lw $a0 s2
mfc0 $k0 $14 # EPC ⇐ Get the return address (EPC)

.set noat
move $at $k1 # Restore $at

.set at
rfe # Return from exception handler
addiu $k0 $k0 4 # Return to next instruction
jr $k0

4

CS 152 L12 Micrcode, Interrrupts (19) Patterson Fall 2003 © UCB

Administrivia
• Lab 4 demo Mon 10/13, write up Tue 10/14
• Reading Ch 5: 5.1 to 5.8, Ch 6: 6.1 to 6.7
• Midterm Wed Oct 8 5:30 - 8:30 in 1 LeConte

– Midterm review Sunday Oct 4, 5 PM in 306 Soda
– Bring 1 page, handwritten notes, both sides
– Meet at LaVal’s Northside afterwards for Pizza
– No lecture Thursday Oct 9

• Office hours
– Mon 4 – 5:30 Jack, Tue 3:30-5 Kurt,

Wed 3 – 4:30 John, Thu 3:30-5 Ben
– Dave’s office hours Tue 3:30 – 5

CS 152 L12 Micrcode, Interrrupts (20) Patterson Fall 2003 © UCB

Example: How Control Handles Traps in our FSD
• Undefined Instruction–detected when no next state is defined from

state 1 for the op value.
– We handle this exception by defining the next state value for all op values

other than lw, sw, 0 (R-type), jmp, beq, and ori as new state 12.
– Shown symbolically using “other” to indicate that the op field does not

match any of the opcodes that label arcs out of state 1.
• Arithmetic overflow–detected on ALU ops such as signed add

– Used to save PC and enter exception handler
• External Interrupt – flagged by asserted interrupt line

– Again, must save PC and enter exception handler
• Note: Challenge in designing control of a real machine is to handle

different interactions between instructions and other exception-causing
events such that control logic remains small and fast.
– Complex interactions makes the control unit the most challenging aspect of

hardware design

CS 152 L12 Micrcode, Interrrupts (21) Patterson Fall 2003 © UCB

How add traps and interrupts to state diagram?
IR <= MEM[PC]

PC <= PC + 4

R-type

S <= A fun B

R[rd] <= S

S <= A op ZX

R[rt] <= S

ORi

S <= A + SX

R[rt] <= M

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B

SW

“instruction fetch”

“decode”

0000

0001

0100

0101

0110

0111

1000

1001

1010

1011

1100

BEQ

0010

If A = B
then PC <= S

S<= PC +SX

undefined
instruction

EPC <= PC - 4
PC <= exp_addr
cause <= 10 (RI)

other

S <= A - B
overflow

EPC <= PC - 4
PC <= exp_addr
cause <= 12 (Ovf)

EPC <= PC - 4
PC <= exp_addr
cause <= 0(INT)

Handle
Interrupt

Pending INT

Interrupts are precise
because user-visible state
committed after
exceptions flagged!

CS 152 L12 Micrcode, Interrrupts (22) Patterson Fall 2003 © UCB

But: What has to change in our µ-sequencer?
• Need concept of branch at micro-code level

R-type

S <= A fun B
0100

overflow

EPC <= PC - 4
PC <= exp_addr
cause <= 12 (Ovf)

µAddress
Select
LogicOpcode

microPC

1

A
dd

er

Dispatch
ROM

Mux

0
012

M
ux

Mux

0

1

overflow
pending interrupt

4?

N?

Cond Select
Do µ-branch

µ-offset Seq Select

CS 152 L12 Micrcode, Interrrupts (23) Patterson Fall 2003 © UCB

Exception/Interrupts and Pipelining

5 instructions, executing in 5 different pipeline stages!
• Who caused the interrupt?

Stage Problem interrupts/Exceptions occurring
IF Page fault on instruction fetch; misaligned memory

access; memory-protection violation
ID Undefined (or illegal) opcode
EX Arithmetic exception
MEMPage fault on data fetch; misaligned memory

access; memory-protection violation; memory error
• How do we stop the pipeline? How do we restart it?
• Do we interrupt immediately or wait?
• How do we sort all of this out to maintain preciseness?

CS 152 L12 Micrcode, Interrrupts (24) Patterson Fall 2003 © UCB

Another look at the exception problem

• Use pipeline to sort this out!
– Pass exception status along with instruction.
– Keep track of PCs for every instruction in pipeline.
– Don’t act on exception until it reache WB stage

• Handle interrupts through “faulting noop” in IF stage

• When instruction reaches end of MEM stage:
– Save PC ⇒ EPC, Interrupt vector addr ⇒ PC
– Turn all (partially-executed) succeeding instructions into noops!

Pr
og

ra
m

 F
lo

w

Time

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

IFetch Dcd Exec Mem WB

Data TLB

Bad Inst

Inst TLB fault

Overflow

5

CS 152 L12 Micrcode, Interrrupts (25) Patterson Fall 2003 © UCB

Exception Handling: Add to pipe. reg to record

npc

I mem

Regs

B

alu

S

D mem

m

IAU

PClw $2,20($5)

Regs

A im op rwn

detect bad instruction address

detect bad instruction

detect overflow

detect bad data address

Allow exception to take effect

Excp

Excp

Excp

Excp

CS 152 L12 Micrcode, Interrrupts (26) Patterson Fall 2003 © UCB

Recap: Microprogramming

• Microprogramming is a fundamental concept
– implement an instruction set by building a very simple processor

and interpreting the instructions
– essential for very complex instructions and when few register

transfers are possible
– overkill when ISA matches datapath 1-1

sequencer
control

datapath control

micro-PC µ-sequencer:
fetch,dispatch,
sequential

microinstruction (µ)

Dispatch
ROMOpcode

µ-Code ROM

DecodeDecode

To DataPath

Decoders implement our
µ-code language:
For instance:

rt-ALU
rd-ALU
mem-ALU

CS 152 L12 Micrcode, Interrrupts (27) Patterson Fall 2003 © UCB

Recap: Microprogramming
• Microprogramming is a convenient method for implementing structured

control state diagrams:
– Random logic replaced by microPC sequencer and ROM
– Each line of ROM called a µinstruction:

contains sequencer control + values for control points
– limited state transitions:

branch to zero, next sequential,
branch to µinstruction address from displatch ROM

• Design of a Microprogramming language
1. Start with list of control signals
2. Group signals together that make sense (vs. random): called “fields”
3. Place fields in some logical order (e.g., ALU operation & ALU operands first

and microinstruction sequencing last)
4. To minimize the width, encode operations that will never be used at the

same time
5. Create a symbolic legend for the microinstruction format, showing name of

field values and how they set the control signals

CS 152 L12 Micrcode, Interrrupts (28) Patterson Fall 2003 © UCB

Recap: Multicycle datapath (book)

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32

A
L

U

32
32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Zero

Zero
PCWrCond PCSrc

32

IorD

M
em

D
ata R

eg

A
L

U
 O

utB

A

MemRd

CS 152 L12 Micrcode, Interrrupts (29) Patterson Fall 2003 © UCB

Recap: List of control signals
Signal name Effect when deasserted Effect when asserted

ALUSelA 1st ALU operand = PC 1st ALU operand = Reg[rs]
RegWrite None Reg. is written
MemtoReg Reg. write data input = ALU Reg. write data input = memory
RegDst Reg. dest. no. = rt Reg. dest. no. = rd
MemRead None Memory at address is read,

MDR <= Mem[addr]
MemWrite None Memory at address is written
IorD Memory address = PC Memory address = S
IRWrite None IR <= Memory
PCWrite None PC <= PCSource
PCWriteCond None IF ALUzero then PC <= PCSource
PCSource PCSource = ALU PCSource = ALUout
ExtOp Zero Extended Sign Extended

Si
ng

le
 B

it
Co

nt
ro

l

Signal name Value Effect
ALUOp 00 ALU adds

01 ALU subtracts
10 ALU does function code
11 ALU does logical OR

ALUSelB 00 2nd ALU input = 4
01 2nd ALU input = Reg[rt]
10 2nd ALU input = extended,shift left 2
11 2nd ALU input = extended

M
ul

tip
le

 B
it

Co
nt

ro
l

CS 152 L12 Micrcode, Interrrupts (30) Patterson Fall 2003 © UCB

Recap: Group together related signals

Ideal
Memory
WrAdr
Din

RAdr

32

32

32
Dout

MemWr

32

A
L

U

32
32

ALUOp

ALU
Control

32

IRWr

Instruction R
eg

32

Reg File

Ra

Rw

busW

Rb
5

5

32
busA

32busB

RegWr

Rs

Rt

M
ux

0

1

Rt

Rd

PCWr

ALUSelA

Mux 01

RegDst

M
ux

0

1

32

PC

MemtoReg

Extend

ExtOp

M
ux

0

1
32

0

1

2
3

4

16Imm 32

<< 2

ALUSelB

M
ux

1

0

32

Zero

Zero
PCWrCond PCSrc

32

IorD

M
em

D
ata R

eg

A
L

U
 O

utB

A

MemRd

ALU

SRC1

SRC2

DestinationMemory

PCWrite

6

CS 152 L12 Micrcode, Interrrupts (31) Patterson Fall 2003 © UCB

Recap: Specific Sequencer from before
Sequencer-based control unit from last lecture

– Called “microPC” or “µPC” vs. state register
Code Name Effect

00 fetch Next µaddress = 0
01 dispatch Next µaddress = dispatch ROM
10 seq Next µaddress = µaddress + 1

ROM:

Opcode

microPC

1

µAddress
Select
Logic

Adder

ROM

Mux

0
012

Opcode: Dispatch state
000000: Rtype (0100)

000100: BEQ (0010)

001101: ORI (0110)

100011: LW (1000)

101011: SW (1011)

CS 152 L12 Micrcode, Interrrupts (32) Patterson Fall 2003 © UCB

Recap: Group into Fields, Order and Assign Names

Field Name Values for Field Function of Field with Specific Value
ALU Add ALU adds

Subt. ALU subtracts
Func ALU does function code
Or ALU does logical OR

SRC1 PC 1st ALU input <= PC
rs 1st ALU input <= Reg[rs]

SRC2 4 2nd ALU input <= 4
Extend 2nd ALU input <= sign ext. IR[15-0]
Extend0 2nd ALU input <= zero ext. IR[15-0]
Extshft 2nd ALU input <= sign ex., {IR[15-0],2b00}
rt 2nd ALU input <= Reg[rt]

Dest(ination) rd ALU Reg[rd] <= ALUout
rt ALU Reg[rt] <= ALUout
rt Mem Reg[rt] <= Mem

Mem(ory) Read PC Read memory using PC
Read ALU Read memory using ALUout for addr
Write ALU Write memory using ALUout for addr

Memreg IR IR <= Mem
PCwrite ALU PC <= ALU

ALUoutCond IF (Zero) PC <= ALUout
Seq(uencing) Seq Go to next sequential µinstruction

Fetch Go to the first microinstruction
Dispatch Dispatch using ROM.

SeqPCwriteMemregMemDestSRC2SRC1ALU

CS 152 L12 Micrcode, Interrrupts (33) Patterson Fall 2003 © UCB

Recap: Multicycle FSM
IR <= MEM[PC]

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S
PC <= PC + 4

S <= A or ZX

R[rt] <= S
PC <= PC + 4

ORi

S <= A + SX

R[rt] <= M
PC <= PC + 4

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B

BEQ
PC <= PC + 4 +
Zero : imm : 0

SW

“instruction fetch”

“decode / operand fetch”

Ex
ec

ut
e

M
em

or
y

W
rit

e-
ba

ck

PC <= PC + 4

Q: Can we optimize
To our datapath?

CS 152 L12 Micrcode, Interrrupts (34) Patterson Fall 2003 © UCB

Revised Multicycle FSM
IR <= MEM[PC];

PC <= PC + 4

R-type

A <= R[rs]
B <= R[rt]

S <= A fun B

R[rd] <= S

S <= A or ZX

R[rt] <= S

ORi

S <= A + SX

R[rt] <= M

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B

BEQ
PC <= PC +

Zero : imm : 0

SW

“instruction fetch”

“decode / operand fetch”

Ex
ec

ut
e

M
em

or
y

W
rit

e-
ba

ck

Q: Can we optimize
to our datapath again?

CS 152 L12 Micrcode, Interrrupts (35) Patterson Fall 2003 © UCB

Revised Multicycle FSM 2
IR <= MEM[PC];

PC <= PC + 4

R-type

A <= R[rs]
B <= R[rt]

ALUout = PC
+ SX

S <= A fun B

R[rd] <= S

S <= A or ZX

R[rt] <= S

ORi

S <= A + SX

R[rt] <= M

M <= MEM[S]

LW

S <= A + SX

MEM[S] <= B

BEQ
If (Zero)

PC <= ALUout

SW

“instruction fetch”

“decode / operand fetch”

Ex
ec

ut
e

M
em

or
y

W
rit

e-
ba

ck

CS 152 L12 Micrcode, Interrrupts (36) Patterson Fall 2003 © UCB

Recap: 1st Microinstruction (1/10)
Addr ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write Sequencing

Fetch:
0000: Add PC 4 Read PC IR ALU Seq
0001:

BEQ:
0010:

Rtype:
0100:
0101:

ORI:
0110:
0111:

LW:
1000:
1001:
1010:

SW:
1011:
1100:

7

CS 152 L12 Micrcode, Interrrupts (37) Patterson Fall 2003 © UCB

Addr ALU SRC1 SRC2 Dest. Memory Mem. Reg. PC Write Sequencing
Fetch:

0000: Add PC 4 Read PC IR ALU Seq
0001: Q1?

BEQ:
0010: Q2?

Rtype:
0100: Q3?
0101: Q4?

ORI:
0110: Q5?
0111: Q4?

LW:
1000: Q1?
1001: Q4?
1010: Q4?

SW:
1011: Q1?
1100: Q4?

Microprogram it yourself! (2/10)

Add ALU adds
Subt ALU subtracts
Func ALU does function code
Or ALU does logical OR
(blank) (do nothing)

1. Q1:Add Q2:Subt Q3:Func Q4: Or Q5:blank
2. Q1:Add Q2:Subt Q3:Func Q4: blank Q5:Or
3. Q1:blank Q2:Subt Q3:Func Q4: Add Q5:Or
4. Q1:blank Q2:Add Q3:Func Q4: Or Q5:blank
5. Q1:Func Q2:Add Q3:Func Q4: blank Q5:Or
6. None of the above

CS 152 L12 Micrcode, Interrrupts (49) Patterson Fall 2003 © UCB

Legacy Software and Microprogramming
• IBM bet company on 360 Instruction Set Architecture (ISA):

single instruction set for many classes of machines
– (8-bit to 64-bit)

• Stewart Tucker stuck with job of what to do about software
compatibility
– If microprogramming could easily do same instruction set

on many different microarchitectures, then why couldn’t
multiple microprograms do multiple instruction sets on
the same microarchitecture?

– Coined term “emulation”: instruction set interpreter in
microcode for non-native instruction set

– Very successful: in early years of IBM 360 it was hard to
know whether old instruction set or new instruction set
was more frequently used

CS 152 L12 Micrcode, Interrrupts (50) Patterson Fall 2003 © UCB

Microprogramming Pros and Cons
• Ease of design
• Flexibility

– Easy to adapt to changes in organization, timing, technology
– Can make changes late in design cycle, or even in the field

• Can implement very powerful instruction sets (just more
control memory)

• Generality
– Can implement multiple instruction sets on same machine.
– Can tailor instruction set to application.

• Compatibility
– Many organizations, same instruction set

• Costly to implement
• Slow

CS 152 L12 Micrcode, Interrrupts (51) Patterson Fall 2003 © UCB

Thought: Microprogramming one inspiration for RISC
• If simple instruction could execute at very high

clock rate…
• If you could even write compilers to produce

microinstructions…
• If most programs use simple instructions and addressing

modes…
• If microcode is kept in RAM instead of ROM so as to fix

bugs …
• If same memory used for control memory could be used

instead as cache for “macroinstructions”…
• Then why not skip instruction interpretation by a

microprogram and simply compile directly into lowest
language of machine? (microprogramming is overkill
when ISA matches datapath 1-1)

CS 152 L12 Micrcode, Interrrupts (52) Patterson Fall 2003 © UCB

Summary
• Exceptions, Interrupts handled as unplanned procedure

calls
• Control adds arcs to check for exceptions, new states to

adjust PC, set CPU status
• OS implements interrupt/exception policy (priority levels)

using Interrupt Mask
• For pipelining, interrupts need to be precise (like

multicycle)
• Control design can reduces to Microprogramming
• Control is more complicated with:

– complex instruction sets
– restricted datapaths (see the book)

