
CS 152 L13 Cache1 (1) Patterson Fall 2003 © UCB

CS152 – Computer Architecture and
Engineering

Lecture 13 – Cache Part I

2003-10-07

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

CS 152 L13 Cache1 (2) Patterson Fall 2003 © UCB

Review
• Exceptions, Interrupts handled as unplanned procedure

calls
• Control adds arcs to check for exceptions, new states to

adjust PC, set CPU status
• OS implements interrupt/exception policy (priority levels)

using Interrupt Mask
• For pipelining, interrupts need to be precise (like

multicycle)
• Control design can reduces to Microprogramming
• Control is more complicated with:

– complex instruction sets
– restricted datapaths

CS 152 L13 Cache1 (3) Patterson Fall 2003 © UCB

• The Five Classic Components of a
Computer

The Big Picture: Where are We Now?

Control

Datapath

Memory

Processor

Input

Output

CS 152 L13 Cache1 (4) Patterson Fall 2003 © UCB

Technology Trends

DRAM
Year Size Cycle Time
1980 64 Kb 250 ns
1983 256 Kb 220 ns
1986 1 Mb 190 ns
1989 4 Mb 165 ns
1992 16 Mb 145 ns
1996 64 Mb 120 ns
1998 128 Mb 100 ns
2000 256 Mb 80 ns
2002 512 Mb 60 ns

Capacity Speed (latency)
Logic: 2x in 3 years 2x in 3 years
DRAM: 4x in 4 years 2x in 10 years
Disk: 4x in 2 years 2x in 10 years

1000:1! 3:1!

CS 152 L13 Cache1 (5) Patterson Fall 2003 © UCB

µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10 yrs)1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU
19

82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

Time

“Moore’s Law”

Processor-DRAM Memory Gap (latency)

Who Cares About the Memory Hierarchy?

“Less’ Law?”

CS 152 L13 Cache1 (6) Patterson Fall 2003 © UCB

The Goal: illusion of large, fast, cheap memory

• Fact:
Large memories are slow
Fast memories are small

• How do we create a memory that is large,
cheap and fast (most of the time)?
– Hierarchy
– Parallelism

CS 152 L13 Cache1 (7) Patterson Fall 2003 © UCB

Memory Hierarchy of a Modern Computer System
• By taking advantage of the principle of locality:

– Present the user with as much memory as is available in the
cheapest technology.

– Provide access at the speed offered by the fastest technology.

Control

Datapath

Secondary
Storage
(Disk)

Processor

R
egisters

Main
Memory
(DRAM)

Second
Level
Cache

(SRAM)

O
n-C

hip
C

ache

1s 10,000,000s
(10s ms)

Speed (ns): 10s 100s

100s GsSize (bytes): Ks Ms

Tertiary
Storage
(Tape)

10,000,000,000s
(10s sec)

Ts

CS 152 L13 Cache1 (8) Patterson Fall 2003 © UCB

Recap: Memory Hierarchy Technology
• Random Access:

– “Random” is good: access time is the same for all locations
– DRAM: Dynamic Random Access Memory

• High density, low power, cheap, slow
• Dynamic: need to be “refreshed” regularly
• 1 Transistor per memory cell

– SRAM: Static Random Access Memory
• Low density, high power, expensive, fast
• Static: content will last “forever”(until lose power)
• 6 transistors per memory cell
• SRAM cell about 10X larger than DRAM cell

– SRAM in logic fab process, DRAM has own fab
• “Non-so-random” Access Technology:

– Access time varies from location to location and from time to time
– Examples: Disk, CDROM, DRAM page-mode access

• Sequential Access Technology: access time linear in
location (e.g.,Tape)

Cell Plate Si

Capacitor Insulator

Storage Node Poly

2nd Field Oxide

Refilling Poly

Si Substrate

DRAM trench cell

CS 152 L13 Cache1 (9) Patterson Fall 2003 © UCB

• Die size, testing time, yield => profit
– Yield >> 60%

(redundant rows/columns to repair flaws)
• 3 phases: engineering samples, first customer

ship(FCS), mass production
– Fastest to FCS, mass production wins share

• Sell 10% of a single DRAM generation

DRAM Design Goals

CS 152 L13 Cache1 (10) Patterson Fall 2003 © UCB

What does “Syncronous” RAM mean?
• Take basic RAMs (SRAM and DRAM) and add clock:

– Gives SSRAM or SDRAM (Synchronous SRAM/DRAM)
– Addresses and Control set up ahead of time, clock edges activate

• More complicated, on-chip controller
– Operations synchronized to clock

• So, give row address one cycle
• Column address some number of cycles later (say 2)
• Data comes out later (say 2 cycles later)

– Burst modes
• Typical might be 1,2,4,8, or 256 length burst
• Thus, only give RAS and CAS once for all of these accesses

– Multi-bank operation (on-chip interleaving)
• Lets you overlap startup latency (5 cycles above) of two banks

• Careful of timing specs!
– 10ns (100 MHz) SDRAM may still require 60ns to get first data!
– 60ns DRAM means first data out in 60ns

CS 152 L13 Cache1 (11) Patterson Fall 2003 © UCB

What about DDR, PC3200, …?
• SDRAM

– bus clock 100 MHz, 150 MHz, ...
– DIMM width = 8 bytes
– BW: clock x 8 bytes = 800 MB/sec, 1200 MB/s,...
– SDRAM DIMMs called PC100, PC 150,… (clock)

• Double Data Rate (DDR) SDRAM
– transfer on both rising edge and falling edge
– bus clock 100 MHz, 150 MHz, 200 MHz, …
– BW: clock x 2 x 8 bytes = 1600, 2400, 3200 MB/s
– DDR SDRAM DIMMs called PC1600, PC2400,

PC3200 (peak BW)

CS 152 L13 Cache1 (12) Patterson Fall 2003 © UCB

$0

$50

$100

$150

$200

$250

$300

PC
10

0

PC
13

3

PC
15

0

PC
21

00

PC
24

00

PC
27

00

PC
30

00

PC
32

00

PC
35

00

PC
37

00

PC
40

00

1024 MB/DIMM
512 MB/DIMM
256 MB/DIMM

$/GB: Pay for Bandwidth, Capacity/DIMM

• 2X to 4X for highest vs. lowest BW/DIMM
• ~1.1X to ~1.2X for biggest capacity

SDRAM DDR SDRAM

CS 152 L13 Cache1 (13) Patterson Fall 2003 © UCB

• DRAMs: capacity +60%/yr, cost –30%/yr
– Before: 2.5X cells/area, 1.5X die size in -3 years

• DRAM fab line costs $2B to $3B
– DRAM only: density, leakage v. speed

• Commodity, second source industry
=> high volume, low profit, conservative
– Little organization innovation in 20 years

page mode, EDO, Synch DRAM, DDR SDRAM
• Order of importance: 1) Cost/bit 1a) Capacity

– RAMBUS: 10X BW, +30% cost => little impact

DRAM History

CS 152 L13 Cache1 (14) Patterson Fall 2003 © UCB

Administrivia
• Lab 4 demo Mon 10/13, write up Tue 10/14
• Midterm Wed Oct 8 5:30 - 8:30 in 1 LeConte

– Bring 1 page (both sides), handwritten notes
– Meet at LaVal’s Northside afterwards for Pizza
– No lecture Thursday Oct 9
– Through last week lecture (Chapters 1 to 6)

• Office hours
– Mon 4 – 5:30 Jack, Tue 3:30-5 Kurt,

Wed 3 – 4:30 John, Thu 3:30-5 Ben
– Dave’s office hours Tue 3:30 – 5

CS 152 L13 Cache1 (15) Patterson Fall 2003 © UCB

Memory Hierarchy: Why Does it Work? Locality!

• Temporal Locality (Locality in Time):
=> Keep most recently accessed data items closer to the processor

• Spatial Locality (Locality in Space):
=> Move blocks consists of contiguous words to the upper levels

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Address Space0 2^n - 1

Probability
of reference

CS 152 L13 Cache1 (16) Patterson Fall 2003 © UCB

How is the hierarchy managed?

• Registers <-> Memory
– by compiler

• cache <-> memory
– by the hardware

• memory <-> disks
– by the hardware and operating system (virtual

memory)
– by the programmer (files)

CS 152 L13 Cache1 (17) Patterson Fall 2003 © UCB

Memory Hierarchy: Terminology
• Hit: data appears in some block in the upper level

(example: Block X)
– Hit Rate: the fraction of memory access found in the upper level
– Hit Time: Time to access the upper level which consists of

RAM access time + Time to determine hit/miss

• Miss: data needs to be retrieve from a block in the lower
level (Block Y)
– Miss Rate = 1 - (Hit Rate)
– Miss Penalty: Time to replace a block in the upper level +

Time to deliver the block the processor

• Hit Time << Miss Penalty Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

CS 152 L13 Cache1 (18) Patterson Fall 2003 © UCB

Recap: Cache Performance
• CPU time = (CPU execution clock cycles +

Memory stall clock cycles) x clock cycle time

• Memory stall clock cycles =
(Reads x Read miss rate x Read miss penalty +
Writes x Write miss rate x Write miss penalty)

• Memory stall clock cycles =
Memory accesses x Miss rate x Miss penalty

• Different measure: AMAT

Average Memory Access time (AMAT) =
Hit Time + (Miss Rate x Miss Penalty)

• Note: memory hit time is included in execution cycles.

CS 152 L13 Cache1 (19) Patterson Fall 2003 © UCB

Recap: Impact on Performance
• Suppose a processor executes at

– Clock Rate = 2 GHz (0.5 ns per cycle)
– Base CPI = 1.1
– 50% arith/logic, 30% ld/st, 20% control

• Suppose that 10% of memory operations get 50 cycle miss
penalty (very optimistic)

• Suppose that 1% of instructions get same miss penalty
• CPI = Base CPI + average stalls per instruction

= 1.1(cycles/ins) +
[0.30 (DataMops/ins)

x 0.10 (miss/DataMop) x 50 (cycle/miss)] +
[1 (InstMop/ins)

x 0.01 (miss/InstMop) x 50 (cycle/miss)]
= (1.1 + 1.5 + .5) cycle/ins = 3.1

• 58% time (2.0/3.1) proc is stalled waiting for memory!
• AMAT=(1/1.3)x[1+0.01x50]+(0.3/1.3)x[1+0.10x50]=2.54

CS 152 L13 Cache1 (20) Patterson Fall 2003 © UCB

Impact of Memory Hierarchy on Algorithms
• Today CPU time is a function of (ops, cache misses)
• What does this mean to Compilers, Data structures,

Algorithms?
– Quicksort:

fastest comparison based sorting algorithm when keys fit in
memory

– Radix sort: also called “linear time” sort
For keys of fixed length and fixed radix a constant number of

passes over the data is sufficient independent of the number of
keys

• “The Influence of Caches on the Performance of Sorting”
by A. LaMarca and R.E. Ladner. Proceedings of the Eighth
Annual ACM-SIAM Symposium on Discrete Algorithms,
January, 1997, 370-379.
– 32 byte blocks, direct mapped L2 2MB cache, 8 byte keys, from

4000 to 4,000,000 elements (keys)

CS 152 L13 Cache1 (21) Patterson Fall 2003 © UCB

Quicksort vs. Radix as vary number keys: Instructions

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)

Job size in keys

Instructions/key

Radix sort

Quick
sort

CS 152 L13 Cache1 (22) Patterson Fall 2003 © UCB

Quicksort vs. Radix as vary number keys: Instrs & Time

0

100

200

300

400

500

600

700

800

1000 10000 100000 1000000 1E+07

Quick (Instr/key)
Radix (Instr/key)
Quick (Clocks/key)
Radix (clocks/key)

Time

Job size in keys

Instructions

Radix sort

Quick
sort

CS 152 L13 Cache1 (23) Patterson Fall 2003 © UCB

Quicksort vs. Radix as vary number keys: Cache misses

0

1

2

3

4

5

1000 10000 100000 1000000 1000000
0

Quick(miss/key)
Radix(miss/key)

Cache misses

Job size in keys

Radix sort

Quick
sort

What is proper approach to fast algorithms?

CS 152 L13 Cache1 (24) Patterson Fall 2003 © UCB

Example: 1 KB Direct Mapped Cache with 32 B Blocks
• For a 2 ** N byte cache:

– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2 ** M)

– One cache miss, pull in complete “Cache Block” (or “Cache Line”)

Cache Index

0

1

2

3

:

Cache Data

Byte 0

0431

:

Cache Tag Example: 0x50

Ex: 0x01

0x50

Stored as part
of the cache “state”

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

9
Block address

CS 152 L13 Cache1 (25) Patterson Fall 2003 © UCB

Example: Set Associative Cache
• N-way set associative: N entries for each Cache Index

– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
1. Cache Index selects a “set” from the cache
2. The two tags in the set are compared to the input in parallel
3. Data is selected based on the tag result

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

CS 152 L13 Cache1 (26) Patterson Fall 2003 © UCB

Disadvantage of Set Associative Cache
• N-way Set Associative Cache versus Direct Mapped

Cache:
– N comparators vs. 1
– Extra MUX delay for the data
– Data comes AFTER Hit/Miss decision and set selection

• In a direct mapped cache, Cache Block is available
BEFORE Hit/Miss:
– Possible to assume a hit and continue. Recover later if miss.

Cache Data

Cache Block 0

Cache Tag Valid

: ::

Cache Data

Cache Block 0

Cache TagValid

:: :

Cache Index

Mux 01Sel1 Sel0

Cache Block

Compare
Adr Tag

Compare

OR

Hit

CS 152 L13 Cache1 (27) Patterson Fall 2003 © UCB

Example: Fully Associative
• Fully Associative Cache

– Forget about the Cache Index
– Compare the Cache Tags of all cache entries in parallel
– Example: Block Size = 32 B blocks, we need N 27-bit comparators

• (By definition: Conflict Miss = 0 for a fully associative
cache)

:

Cache Data

Byte 0

0431

:

Cache Tag (27 bits long)

Valid Bit

:

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Cache Tag

Byte Select

Ex: 0x01

=

=

=

=

=

CS 152 L13 Cache1 (28) Patterson Fall 2003 © UCB

• Compulsory (cold start or process migration, first
reference): first access to a block
– “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction,

Compulsory Misses are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program
– Main Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped

to the same cache location
– Main Solution: increase associativity

• Coherence (Invalidation): other process (e.g., I/O)
updates memory

A Summary on Sources of Cache Misses

CS 152 L13 Cache1 (29) Patterson Fall 2003 © UCB

Design options at constant cost

Direct Mapped N-way Set Associative Fully Associative

Compulsory Miss

Cache Size

Capacity Miss

Coherence Miss

Big Medium Small

Note:
If you are going to run “billions” of instruction, Compulsory Misses are insignificant
(except for streaming media types of programs).

Same Same Same

Conflict Miss High Medium Zero

Low Medium High

Same Same Same

CS 152 L13 Cache1 (30) Patterson Fall 2003 © UCB

Cache Size (KB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

1 2 4 8

16 32 64

12
8

1-way

2-way

4-way

8-way

Capacity

Compulsory

Conflict

3Cs Absolute Miss Rate (SPEC92)

CS 152 L13 Cache1 (31) Patterson Fall 2003 © UCB

Cache Size (KB)

0%

20%

40%

60%

80%

100%
1 2 4 8

16 32 64

12
8

1-way

2-way
4-way

8-way

Capacity

Compulsory

Conflict

3Cs Relative Miss Rate

CS 152 L13 Cache1 (32) Patterson Fall 2003 © UCB

Peer Review: 4Cs model

• Which are true?
A: You cannot reduce compulsory misses

(hence the name)
B: To get rid of a particular conflict miss,

you must increase cache associativity
C: To reduce capacity misses, you must

increase cache size
1.ABC: FFF
2.ABC: FFT
3.ABC: FTF
4.ABC: FTT

5. ABC: TFF
6. ABC: TFT
7. ABC: TTF
8. ABC: TTT

CS 152 L13 Cache1 (33) Patterson Fall 2003 © UCB

• Q1: Where can a block be placed in the
upper level? (Block placement)

• Q2: How is a block found if it is in the
upper level?(Block identification)

• Q3: Which block should be replaced on
a miss? (Block replacement)

• Q4: What happens on a write?
(Write strategy)

Recap: Four Questions for Caches and Memory Hierarch

CS 152 L13 Cache1 (34) Patterson Fall 2003 © UCB

• Block 12 placed in 8 block cache:
– Fully associative, direct mapped, 2-way set associative
– S.A. Mapping = Block Number Modulo Number Sets

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go only into
block 4 (12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go anywhere
in set 0 (12 mod 4)

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Q1: Where can a block be placed in the upper level?

CS 152 L13 Cache1 (35) Patterson Fall 2003 © UCB

• Direct indexing (using index and block
offset), tag compares, or combination

• Increasing associativity shrinks index,
expands tag

Block
offset

Block Address

Tag Index

Q2: How is a block found if it is in the upper level?

Set Select

Data Select

CS 152 L13 Cache1 (36) Patterson Fall 2003 © UCB

• Easy for Direct Mapped
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

Associativity: 2-way 4-way 8-way
Size LRU Random LRU Random LRU Random
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q3: Which block should be replaced on a miss?

CS 152 L13 Cache1 (37) Patterson Fall 2003 © UCB

• Write through—The information is written to both the
block in the cache and to the block in the lower-level
memory.

• Write back—The information is written only to the
block in the cache. The modified cache block is written
to main memory only when it is replaced.
– is block clean or dirty?

• Pros and Cons of each?
– WT: read misses cannot result in writes
– WB: no writes of repeated writes

• WT much easier to debug, design (hence lab 5/6)
• WT always combined with write buffers so that don’t

wait for lower level memory

Q4: What happens on a write?

CS 152 L13 Cache1 (38) Patterson Fall 2003 © UCB

• A Write Buffer is needed between the Cache and
Memory
– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Must handle bursts of writes
– Works fine if: Store frequency (w.r.t. time) << 1 / DRAM write

cycle

Processor
Cache

Write Buffer

DRAM

Write Buffer for Write Through

CS 152 L13 Cache1 (39) Patterson Fall 2003 © UCB

• Write-Buffer Issues: Could introduce RAW (Read After
Write) Hazard with memory!
– Write buffer may contain only copy of valid data ⇒

Reads to memory may get wrong result if we ignore write buffer
• Solutions:

– Simply wait for write buffer to empty before servicing reads:
• Might increase read miss penalty (old MIPS 1000 by 50%)

– Check write buffer contents before read (“fully associative”);
• If no conflicts, let the memory access continue
• Else grab data from buffer

• Can Write Buffer help with Write Back?
– Read miss replacing dirty block

• Copy dirty block to write buffer while starting read to memory
– CPU stall less since restarts as soon as do read

RAW Hazards from Write Buffer!

CS 152 L13 Cache1 (40) Patterson Fall 2003 © UCB

• Assume: a 16-bit write to memory location 0x0 and
causes a miss
– Do we allocate space in cache and possibly read in the block?

• Yes: “Write Allocate”
• No: “No Write Allocate”

Cache Index

0

1

2

3

:

Cache Data

Byte 0

0431

:

Cache Tag Example: 0x00

Ex: 0x00

0x50

Valid Bit

:

31

Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :
Byte 992Byte 1023 :

Cache Tag

Byte Select

Ex: 0x00

9

Write-miss Policy: Write Allocate versus Not Allocate

CS 152 L13 Cache1 (41) Patterson Fall 2003 © UCB

Peer Review: Oxymorons and Caches

• Which combinations are oxymorons
(e.g., military intelligence)?

A: LRU replacement, direct mapped cache
B: Write back cache with a write buffer
C: Write through cache with write allocate

1. ABC: NNN
2. ABC: NNY
3. ABC: NYN
4. ABC: NYY

5. ABC: YNN
6. ABC: YNY
7. ABC: YYN
8. ABC: YYY

CS 152 L13 Cache1 (42) Patterson Fall 2003 © UCB

• Set of Operations that must be supported
– read: data <= Mem[Physical Address]
– write: Mem[Physical Address] <= Data

• Determine the internal register transfers
• Design the Datapath
• Design the Cache Controller

Physical Address

Read/Write

Data

Memory
“Black Box”

Inside it has:
Tag-Data Storage,
Muxes,
Comparators, . . .

Cache
Controller

Cache
DataPath

Address

Data In

Data Out

R/W
Active

Control
Points

Signals
wait

How Do you Design a Memory System?

CS 152 L13 Cache1 (43) Patterson Fall 2003 © UCB

Impact on Cycle Time

IR

PC
I -Cache

D Cache

A B

R

T

IRex

IRm

IRwb

miss

invalid

Miss

Cache Hit Time:
directly tied to clock rate
increases with cache size
increases with associativity

Average Memory Access time =
Hit Time + Miss Rate x Miss Penalty

Time = IC x CT x (ideal CPI + memory stalls)

CS 152 L13 Cache1 (44) Patterson Fall 2003 © UCB

Options to reduce AMAT:
1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Time = IC x CT x (ideal CPI + memory stalls)

Average Memory Access time =
Hit Time + (Miss Rate x Miss Penalty) =

(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Improving Cache Performance: 3 general options

CS 152 L13 Cache1 (45) Patterson Fall 2003 © UCB

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Improving Cache Performance

CS 152 L13 Cache1 (46) Patterson Fall 2003 © UCB

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger Block Size

CS 152 L13 Cache1 (47) Patterson Fall 2003 © UCB

• 2:1 Cache Rule:
– Miss Rate DM cache size N ~ Miss Rate 2-way cache

size N/2

• Beware: Execution time is only final
measure!

– Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way

external cache +10%,
internal + 2%

2. Reduce Misses via Higher Associativity

CS 152 L13 Cache1 (48) Patterson Fall 2003 © UCB

• Assume CCT = 1.10 for 2-way, 1.12 for 4-way, 1.14 for 8-
way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

Example: Avg. Memory Access Time vs. Miss Rate

CS 152 L13 Cache1 (49) Patterson Fall 2003 © UCB

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

3. Reducing Misses via a “Victim Cache”

• How to combine fast hit
time of direct mapped
yet still avoid conflict
misses?

• Add buffer to place data
discarded from cache

• Jouppi [1990]: 4-entry
victim cache removed
20% to 95% of conflicts
for a 4 KB direct
mapped data cache

• Used in Alpha, HP
machines

CS 152 L13 Cache1 (50) Patterson Fall 2003 © UCB

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB

cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 streams

got 50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory
bandwidth that can be used without penalty
– Could reduce performance if done indiscriminantly!!!

4. Reducing Misses by Hardware Prefetching

CS 152 L13 Cache1 (51) Patterson Fall 2003 © UCB

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Improving Cache Performance (Continued)

CS 152 L13 Cache1 (52) Patterson Fall 2003 © UCB

0. Reducing Penalty: Faster DRAM / Interface

• New DRAM Technologies
– RAMBUS - same initial latency, but much higher

bandwidth
– Synchronous DRAM
– Startup companies
– Merged DRAM/Logic - IRAM project here at

Berkeley

• Better BUS interfaces
• CRAY Technique: only use SRAM

CS 152 L13 Cache1 (53) Patterson Fall 2003 © UCB

• A Write Buffer is needed between the Cache and
Memory
– Processor: writes data into the cache and the write buffer
– Memory controller: write contents of the buffer to memory

• Write buffer is just a FIFO:
– Typical number of entries: 4
– Works fine if:Store frequency (w.r.t. time) << 1 / DRAM write cycle
– Must handle burst behavior as well!

Processor
Cache

Write Buffer

DRAM

1. Reducing Penalty: Read Priority over Write on Miss

CS 152 L13 Cache1 (54) Patterson Fall 2003 © UCB

• Don’t wait for full block to be loaded before
restarting CPU
– Early restart—As soon as the requested word of the

block arrives, send it to the CPU and let the CPU
continue execution

– Critical Word First—Request the missed word first from
memory and send it to the CPU as soon as it arrives;
let the CPU continue execution while filling the rest of
the words in the block. Also called wrapped fetch and
requested word first

– DRAM FOR LAB 5 can do this in burst mode! (Check
out sequential timing)

• Generally useful only in large blocks,
• Spatial locality a problem; tend to want next

sequential word, so not clear if benefit by early
restart

block

2. Reduce Penalty: Early Restart and Critical Word F

CS 152 L13 Cache1 (55) Patterson Fall 2003 © UCB

• Non-blocking cache or lockup-free cache allow
data cache to continue to supply cache hits
during a miss
– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss” reduces the effective miss
penalty by working during miss vs. ignoring CPU
requests

• “hit under multiple miss” or “miss under miss”
may further lower the effective miss penalty by
overlapping multiple misses
– Significantly increases the complexity of the cache

controller as there can be multiple outstanding memory
accesses

– Requires muliple memory banks (otherwise cannot
support)

– Penium Pro allows 4 outstanding memory misses

3. Reduce Penalty: Non-blocking Caches

CS 152 L13 Cache1 (56) Patterson Fall 2003 © UCB

• For in-order pipeline, 2 options:
– Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall … stall Mem Wr
IF ID EX stall stall stall … stall stall Ex Wr

– Use Full/Empty bits in registers + MSHR queue
• MSHR = “Miss Status/Handler Registers” (Kroft)

Each entry in this queue keeps track of status of outstanding memory
requests to one complete memory line.

– Per cache-line: keep info about memory address.
– For each word: register (if any) that is waiting for result.
– Used to “merge” multiple requests to one memory line

• New load creates MSHR entry and sets destination register to “Empty”.
Load is “released” from pipeline.

• Attempt to use register before result returns causes instruction to block in
decode stage.

• Limited “out-of-order” execution with respect to loads.
Popular with in-order superscalar architectures.

• Out-of-order pipelines already have this functionality built in… (load queues,
etc).

What happens on a Cache miss?

CS 152 L13 Cache1 (57) Patterson Fall 2003 © UCB

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt

ot
t

es
pr

es
so

xl
is

p

co
m

pr
es

s

m
dl

js
p2 ea

r

fp
pp

p

to
m

ca
tv

sw
m

25
6

do
du

c

su
2c

or

w
av

e5

m
dl

jd
p2

hy
dr

o2
d

al
vi

nn

na
sa

7

sp
ic

e2
g6 or

a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

Value of Hit Under Miss for SPEC

CS 152 L13 Cache1 (58) Patterson Fall 2003 © UCB

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will tend to

be referenced again soon.
– Spatial Locality (Locality in Space): If an item is referenced, items whose

addresses are close by tend to be referenced soon.
• SRAM is fast but expensive and not very dense:

– 6-Transistor cell (no static current) or 4-Transistor cell (static current)
– Does not need to be refreshed
– Good choice for providing the user FAST access time.
– Typically used for CACHE

• DRAM is slow but cheap and dense:
– 1-Transistor cell (+ trench capacitor)
– Must be refreshed
– Good choice for presenting the user with a BIG memory system
– Both asynchronous and synchronous versions
– Limited signal requires “sense-amplifiers” to recover

Summary (1/3)

CS 152 L13 Cache1 (59) Patterson Fall 2003 © UCB

Summary 2/ 3:
• The Principle of Locality:

– Program likely to access a relatively small portion of the address space
at any instant of time.

• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Conflict Misses: increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O devices

• Cache Design Space
– total size, block size, associativity
– replacement policy
– write-hit policy (write-through, write-back)
– write-miss policy

CS 152 L13 Cache1 (60) Patterson Fall 2003 © UCB

Summary 3 / 4: The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

