
1

CS 152 L7.2 Cache Optimization (1) K Meinz Fall 2003 © UCB

CS152 – Computer Architecture and
Engineering

Lecture 13 – Fastest Cache Ever!

14 October 2003

Kurt Meinz
(www.eecs.berkeley.edu/~kurtm)

www-inst.eecs.berkeley.edu/~cs152/

CS 152 L7.2 Cache Optimization (2) K Meinz Fall 2003 © UCB

Review
• SDRAM/SRAM

– Clocks are good; handshaking is bad!
• (From a latency perspective.)

• 4 Types of cache misses:
– Compulsory
– Capacity
– Conflict
– (Coherence)

• 4 Questions of cache design:
– Placement
– Re-placement
– Identification (Sorta determined by placement…)
– Write Strategy

CS 152 L7.2 Cache Optimization (3) K Meinz Fall 2003 © UCB

Recap: Measuring Cache Performance

• CPU time = Clock cycle time x
(CPU execution clock cycles + Memory stall clock cycles)

– Memory stall clock cycles =
(Reads x Read miss rate x Read miss penalty +
Writes x Write miss rate x Write miss penalty)

– Memory stall clock cycles =
Memory accesses x Miss rate x Miss penalty

• AMAT =
Hit Time + (Miss Rate x Miss Penalty)

Note: memory hit time is included in execution cycles.
CS 152 L7.2 Cache Optimization (4) K Meinz Fall 2003 © UCB

• Set of Operations that must be supported
– read: data <= Mem[Physical Address]
– write: Mem[Physical Address] <= Data

• Determine the internal register transfers
• Design the Datapath
• Design the Cache Controller

Physical Address

Read/Write

Data

Memory
“Black Box”

Inside it has:
Tag-Data Storage,
Muxes,
Comparators, . . .

Cache
Controller

Cache
DataPath

Address

Data In

Data Out

R/W
Active

Control
Points

Signals
wait

How Do you Design a Memory System?

CS 152 L7.2 Cache Optimization (5) K Meinz Fall 2003 © UCB

Options to reduce AMAT:
1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Time = IC x CT x (ideal CPI + memory stalls)

Average Memory Access time =
Hit Time + (Miss Rate x Miss Penalty) =

(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Improving Cache Performance: 3 general options

CS 152 L7.2 Cache Optimization (6) K Meinz Fall 2003 © UCB

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Improving Cache Performance

2

CS 152 L7.2 Cache Optimization (7) K Meinz Fall 2003 © UCB

Block Size (bytes)

Miss
Rate

0%

5%

10%

15%

20%

25%

16 32 64

12
8

25
6

1K

4K

16K

64K

256K

1. Reduce Misses via Larger Block Size (61c)

CS 152 L7.2 Cache Optimization (8) K Meinz Fall 2003 © UCB

• 2:1 Cache Rule:
– Miss Rate DM cache size N ~ Miss Rate 2-way cache

size N/2

• Beware: Execution time is only final
measure!

– Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way

external cache +10%,
internal + 2%

– Example …

2. Reduce Misses via Higher Associativity (61c)

CS 152 L7.2 Cache Optimization (9) K Meinz Fall 2003 © UCB

• Assume CCT = 1.10 for 2-way, 1.12 for 4-way, 1.14 for 8-
way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

Example: Avg. Memory Access Time vs. Miss Rate

CS 152 L7.2 Cache Optimization (10) K Meinz Fall 2003 © UCB

To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

3. Reducing Misses via a “Victim Cache” (New!)

• How to combine fast hit
time of direct mapped
yet still avoid conflict
misses?

• Add buffer to place data
discarded from cache

• Jouppi [1990]: 4-entry
victim cache removed
20% to 95% of conflicts
for a 4 KB direct
mapped data cache

• Used in Alpha, HP
machines

CS 152 L7.2 Cache Optimization (11) K Meinz Fall 2003 © UCB

• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB

cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 streams

got 50% to 70% of misses from
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory
bandwidth that can be used without penalty
– Could reduce performance if done indiscriminantly!!!

4. Reducing Misses by Hardware Prefetching

CS 152 L7.2 Cache Optimization (12) K Meinz Fall 2003 © UCB

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Improving Cache Performance (Continued)

3

CS 152 L7.2 Cache Optimization (13) K Meinz Fall 2003 © UCB

0. Reducing Penalty: Faster DRAM / Interface

• New DRAM Technologies
– Synchronous DRAM
– Double Data Rate SDRAM
– RAMBUS

• same initial latency, but much higher bandwidth

• Better BUS interfaces

• CRAY Technique: only use SRAM!

CS 152 L7.2 Cache Optimization (14) K Meinz Fall 2003 © UCB

• Before:

• After:

1. Add a (lower) level in the Hierarchy

Processor Cache
DRAM

Processor Cache

DRAM

Cache

CS 152 L7.2 Cache Optimization (15) K Meinz Fall 2003 © UCB

• Don’t wait for full block to be loaded before
restarting CPU
– Early restart—As soon as the requested word of the

block arrives, send it to the CPU and let the CPU
continue execution

– Critical Word First—Request the missed word first from
memory and send it to the CPU as soon as it arrives;
let the CPU continue execution while filling the rest of
the words in the block. Also called wrapped fetch and
requested word first

– DRAM FOR LAB 5 can do this in burst mode! (Check
out sequential timing)

• Generally useful only in large blocks,
• Spatial locality a problem; tend to want next

sequential word, so not clear if benefit by early
restart

block

2. Early Restart and Critical Word First

CS 152 L7.2 Cache Optimization (16) K Meinz Fall 2003 © UCB

• Non-blocking cache or lockup-free cache allow
data cache to continue to supply cache hits
during a miss
– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss” reduces the effective miss
penalty by working during miss vs. ignoring CPU
requests

• “hit under multiple miss” or “miss under miss”
may further lower the effective miss penalty by
overlapping multiple misses
– Significantly increases the complexity of the cache

controller as there can be multiple outstanding memory
accesses

– Requires multiple memory banks (otherwise cannot
support)

– Pentium Pro allows 4 outstanding memory misses

3. Reduce Penalty: Non-blocking Caches

CS 152 L7.2 Cache Optimization (17) K Meinz Fall 2003 © UCB

• For in-order pipeline, 2 options:
– Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall … stall Mem Wr
IF ID EX stall stall stall … stall stall Ex Wr

– Use Full/Empty bits in registers + MSHR queue
• MSHR = “Miss Status/Handler Registers” (Kroft)

Each entry in this queue keeps track of status of outstanding
memory requests to one complete memory line.

– Per cache-line: keep info about memory address.
– For each word: register (if any) that is waiting for result.
– Used to “merge” multiple requests to one memory line

• New load creates MSHR entry and sets destination register to
“Empty”. Load is “released” from stalling pipeline.

• Attempt to use register before result returns causes instruction to
block in decode stage.

• Limited “out-of-order” execution with respect to loads.
Popular with in-order superscalar architectures.

– Out-of-order pipelines already have this functionality built in… (load queues,
etc).

What happens on a Cache miss?

CS 152 L7.2 Cache Optimization (18) K Meinz Fall 2003 © UCB

• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

Hit Under i Misses

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

eq
nt
ot
t

es
pr
es
so

xl
is
p

co
m
pr
es
s

m
dl
js
p2 ea
r

fp
pp
p

to
m
ca
tv

sw
m
25
6

do
du
c

su
2c
or

w
av
e5

m
dl
jd
p2

hy
dr
o2
d

al
vi
nn

na
sa
7

sp
ic
e2
g6 or
a

0->1

1->2

2->64

Base

Integer Floating Point

“Hit under n Misses”

0->1
1->2
2->64
Base

Value of Hit Under Miss for SPEC

4

CS 152 L7.2 Cache Optimization (19) K Meinz Fall 2003 © UCB

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

Improving Cache Performance (Continued)

CS 152 L7.2 Cache Optimization (20) K Meinz Fall 2003 © UCB

1. Add a (higher) level in the Hierarchy (61c)

• Before:

• After:

Processor Cache

DRAM

Processor Cache
DRAM

Cache

CS 152 L7.2 Cache Optimization (21) K Meinz Fall 2003 © UCB

2: Pipelining the Cache! (new!)

• Cache accesses now take multiple
clocks:
– 1 to start the access,
– X (> 0) to finish

– PIII uses 2 stages; PIV takes 4

– Increases hit bandwidth, not latency!

CS 152 L7.2 Cache Optimization (22) K Meinz Fall 2003 © UCB

3: Way Prediction (new!)

• Remember: Associativity negatively
impacts hit time.

• We can recover some of that time by
pre-selecting one of the sets.

• Every block in the cache has a field that says
which index in the set to try on the next access.
Pre-select mux to that field.

• Guess right: Avoid mux propagate time
• Guess wrong: Recover and choose other index

– Costs you a cycle or two.

CS 152 L7.2 Cache Optimization (23) K Meinz Fall 2003 © UCB

3: Way Prediction (new!)

• Does it work?
– You can guess and be right 50%
– Intelligent algorithms can be right ~85%

– Must be able to recover quickly!

– On Alpha 21264:
• Guess right: ICache latency 1 cycle
• Guess wrong: ICache latency 3 cycles
• (Presumably, without way-predict would require

push clock period or #cycles/hit.)
CS 152 L7.2 Cache Optimization (24) K Meinz Fall 2003 © UCB

PRS: Load Prediction (new!)

• Load-Value Prediction:
– Small table of recent load instruction

addresses, resulting data values, and
confidence indicators.

– On a load, look in the table. If a value exists
and the confidence is high enough, use that
value. Meanwhile, do the cache access …

• If the guess was correct: increase confidence
bit and keep going

• If the guess was incorrect: quash the pipe and
restart with correct value.

5

CS 152 L7.2 Cache Optimization (25) K Meinz Fall 2003 © UCB

PRS: Load Prediction

• So, will it work?
• If so, what factor will it improve
• If not, why not?

1. No way! – There is no such thing as data locality!

2. No way! – Load-value mispredictions are too expensive!

3. Oh yeah! – Load prediction will decrease hit time

4. Oh yeah! – Load prediction will decrease the miss penalty

5. Oh yeah! – Load prediction will decrease miss rates

6) 1 and 2 7) 3 and 4 8) 4 and 5 9) 3 and 5 10) None!

CS 152 L7.2 Cache Optimization (26) K Meinz Fall 2003 © UCB

• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will tend to

be referenced again soon.
– Spatial Locality (Locality in Space): If an item is referenced, items whose

addresses are close by tend to be referenced soon.
• SRAM is fast but expensive and not very dense:

– 6-Transistor cell (no static current) or 4-Transistor cell (static current)
– Does not need to be refreshed
– Good choice for providing the user FAST access time.
– Typically used for CACHE

• DRAM is slow but cheap and dense:
– 1-Transistor cell (+ trench capacitor)
– Must be refreshed
– Good choice for presenting the user with a BIG memory system
– Both asynchronous and synchronous versions
– Limited signal requires “sense-amplifiers” to recover

Memory Summary (1/3)

CS 152 L7.2 Cache Optimization (27) K Meinz Fall 2003 © UCB

Memory Summary 2/ 3:
• The Principle of Locality:

– Program likely to access a relatively small portion of the address space
at any instant of time.

• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start misses.
– Conflict Misses: increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O devices

• Cache Design Space
– total size, block size, associativity
– replacement policy
– write-hit policy (write-through, write-back)
– write-miss policy

CS 152 L7.2 Cache Optimization (28) K Meinz Fall 2003 © UCB

Summary 3 / 3: The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B

