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Review
• SDRAM/SRAM

– Clocks are good; handshaking is bad! 
• (From a latency perspective.)

• 4 Types of cache misses:
– Compulsory
– Capacity
– Conflict
– (Coherence)

• 4 Questions of cache design:
– Placement
– Re-placement
– Identification (Sorta determined by placement…)
– Write Strategy
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Recap: Measuring Cache Performance

• CPU time = Clock cycle time x 
(CPU execution clock cycles + Memory stall clock cycles)

– Memory stall clock cycles = 
(Reads x Read miss rate x Read miss penalty + 
Writes x Write miss rate x Write miss penalty)

– Memory stall clock cycles = 
Memory accesses x Miss rate x Miss penalty

• AMAT = 
Hit Time + (Miss Rate x Miss Penalty)

Note: memory hit time is included in execution cycles.
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• Set of Operations that must be supported
– read:  data <= Mem[Physical Address]
– write: Mem[Physical Address] <= Data

• Determine the internal register transfers
• Design the Datapath
• Design the Cache Controller
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How Do you Design a Memory System?
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Options to reduce AMAT:
1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 

Time = IC x CT x (ideal CPI + memory stalls)

Average Memory Access time = 
Hit Time + (Miss Rate x Miss Penalty) =

(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Improving Cache Performance: 3 general options
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1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 

Improving Cache Performance
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1. Reduce Misses via Larger Block Size (61c)
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• 2:1 Cache Rule:
– Miss Rate DM cache size N ~ Miss Rate 2-way cache 

size N/2

• Beware: Execution time is only final 
measure!

– Will Clock Cycle time increase?
– Hill [1988] suggested hit time for 2-way vs. 1-way 

external cache +10%, 
internal + 2% 

– Example …

2. Reduce Misses via Higher Associativity (61c)
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• Assume CCT = 1.10 for 2-way, 1.12 for 4-way, 1.14 for 8-
way vs. CCT direct mapped

Cache Size Associativity
(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

Example: Avg. Memory Access Time vs. Miss Rate
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To Next Lower Level In
Hierarchy

DATATAGS

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

One Cache line of DataTag and Comparator

3. Reducing Misses via a “Victim Cache” (New!)

• How to combine fast hit 
time of direct mapped 
yet still avoid conflict 
misses? 

• Add buffer to place data 
discarded from cache

• Jouppi [1990]: 4-entry 
victim cache removed 
20% to 95% of conflicts 
for a 4 KB direct 
mapped data cache

• Used in Alpha, HP 
machines
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• E.g., Instruction Prefetching
– Alpha 21064 fetches 2 blocks on a miss
– Extra block placed in “stream buffer”
– On miss check stream buffer

• Works with data blocks too:
– Jouppi [1990] 1 data stream buffer got 25% misses from 4KB 

cache; 4 streams got 43%
– Palacharla & Kessler [1994] for scientific programs for 8 streams 

got 50% to 70% of misses from 
2 64KB, 4-way set associative caches

• Prefetching relies on having extra memory 
bandwidth that can be used without penalty
– Could reduce performance if done indiscriminantly!!!

4. Reducing Misses by Hardware Prefetching
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1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 

Improving Cache Performance (Continued)
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0. Reducing Penalty: Faster DRAM / Interface

• New DRAM Technologies 
– Synchronous DRAM
– Double Data Rate SDRAM
– RAMBUS

• same initial latency, but much higher bandwidth

• Better BUS interfaces

• CRAY Technique: only use SRAM!
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• Before:

• After:

1. Add a (lower) level in the Hierarchy

Processor Cache
DRAM

Processor Cache

DRAM

Cache
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• Don’t wait for full block to be loaded before 
restarting CPU
– Early restart—As soon as the requested word of the 

block arrives, send it to the CPU and let the CPU 
continue execution

– Critical Word First—Request the missed word first from 
memory and send it to the CPU as soon as it arrives; 
let the CPU continue execution while filling the rest of 
the words in the block. Also called wrapped fetch and 
requested word  first

– DRAM FOR LAB 5 can do this in burst mode!  (Check 
out sequential timing)

• Generally useful only in large blocks, 
• Spatial locality a problem; tend to want next 

sequential word, so not clear if benefit by early 
restart

block

2. Early Restart and Critical Word First
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• Non-blocking cache or  lockup-free cache allow 
data cache to continue to supply cache hits 
during a miss
– requires F/E bits on registers or out-of-order execution
– requires multi-bank memories

• “hit under miss”  reduces the effective miss 
penalty by working during miss vs. ignoring CPU 
requests

• “hit under multiple miss” or “miss under miss”  
may further lower the effective miss penalty by 
overlapping multiple misses
– Significantly increases the complexity of the cache 

controller as there can be multiple outstanding memory 
accesses

– Requires multiple memory banks (otherwise cannot 
support)

– Pentium Pro allows 4 outstanding memory misses

3. Reduce Penalty: Non-blocking Caches
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• For in-order pipeline, 2 options:
– Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF  ID  EX  Mem stall stall stall … stall Mem   Wr
IF  ID  EX  stall stall stall … stall stall Ex Wr

– Use Full/Empty bits in registers + MSHR queue
• MSHR = “Miss Status/Handler Registers” (Kroft)

Each entry in this queue keeps track of status of outstanding 
memory requests to one complete memory line.

– Per cache-line: keep info about memory address.
– For each word: register (if any) that is waiting for result.
– Used to “merge” multiple requests to one memory line

• New load creates MSHR entry and sets destination register to 
“Empty”.  Load is “released” from stalling pipeline.

• Attempt to use register before result returns causes instruction to 
block in decode stage.

• Limited “out-of-order” execution with respect to loads. 
Popular with in-order superscalar architectures.

– Out-of-order pipelines already have this functionality built in… (load queues, 
etc).

What happens on a Cache miss?
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• FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
• Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
• 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss
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1. Reduce the miss rate, 
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache. 

Improving Cache Performance (Continued)
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1. Add a (higher) level in the Hierarchy (61c)

• Before:

• After:

Processor Cache

DRAM

Processor Cache
DRAM

Cache
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2: Pipelining the Cache! (new!)

• Cache accesses now take multiple 
clocks:
– 1 to start the access,
– X (> 0) to finish

– PIII uses 2 stages; PIV takes 4

– Increases hit bandwidth, not latency!
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3: Way Prediction (new!)

• Remember: Associativity negatively 
impacts hit time.

• We can recover some of that time by 
pre-selecting one of the sets.

• Every block in the cache has a field that says 
which index in the set to try on the next access. 
Pre-select mux to that field. 

• Guess right: Avoid mux propagate time
• Guess wrong: Recover and choose other index

– Costs you a cycle or two.
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3: Way Prediction (new!)

• Does it work?
– You can guess and be right 50%
– Intelligent algorithms can be right ~85%

– Must be able to recover quickly!

– On Alpha 21264:
• Guess right: ICache latency 1 cycle
• Guess wrong: ICache latency 3 cycles
• (Presumably, without way-predict would require 

push clock period or #cycles/hit.)
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PRS: Load Prediction (new!)

• Load-Value Prediction:
– Small table of recent load instruction 

addresses, resulting data values, and 
confidence indicators.

– On a load, look in the table. If a value exists 
and the confidence is high enough, use that 
value. Meanwhile, do the cache access …

• If the guess was correct: increase confidence 
bit and keep going

• If the guess was incorrect: quash the pipe and 
restart with correct value.
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PRS: Load Prediction

• So, will it work?
• If so, what factor will it improve
• If not, why not?

1. No way! – There is no such thing as data locality!

2. No way! – Load-value mispredictions are too expensive!

3. Oh yeah! – Load prediction will decrease hit time

4. Oh yeah! – Load prediction will decrease the miss penalty

5. Oh yeah! – Load prediction will decrease miss rates

6) 1 and 2       7) 3 and 4      8) 4 and 5         9) 3 and 5  10) None!
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• Two Different Types of Locality:
– Temporal Locality (Locality in Time): If an item is referenced, it will tend to 

be referenced again soon.
– Spatial Locality (Locality in Space): If an item is referenced, items whose 

addresses are close by tend to be referenced soon.
• SRAM is fast but expensive and not very dense:

– 6-Transistor cell (no static current) or 4-Transistor cell (static current)
– Does not need to be refreshed
– Good choice for providing the user FAST access time.
– Typically used for CACHE

• DRAM is slow but cheap and dense:
– 1-Transistor cell (+ trench capacitor)
– Must be refreshed
– Good choice for presenting the user with a BIG memory system
– Both asynchronous and synchronous versions
– Limited signal requires “sense-amplifiers” to recover

Memory Summary (1/3)
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Memory Summary 2/ 3:
• The Principle of Locality:

– Program likely to access a relatively small portion of the address space 
at any instant of time.

• Temporal Locality: Locality in Time
• Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.
– Conflict Misses:  increase cache size and/or associativity.

Nightmare Scenario: ping pong effect!
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O devices

• Cache Design Space
– total size, block size, associativity
– replacement policy
– write-hit policy (write-through, write-back)
– write-miss policy

CS 152 L7.2 Cache Optimization (28) K Meinz Fall 2003 © UCB

Summary 3 / 3: The Cache Design Space

• Several interacting dimensions
– cache size
– block size
– associativity
– replacement policy
– write-through vs write-back
– write allocation

• The optimal choice is a compromise
– depends on access characteristics

• workload
• use (I-cache, D-cache, TLB)

– depends on technology / cost

• Simplicity often wins

Associativity

Cache Size

Block Size

Bad

Good

Less More

Factor A Factor B


