CS152 — Computer Architecture and
Engineering
Lecture 13 — Fastest Cache Ever!

14 October 2003

Kurt Meinz

(www.eecs.berkeley.edu/~kurtm)

www-inst.eecs.berkeley.edu/~cs152/

@:5152 L2 o)

K Meinz Fall 2003 © UCB|

Recap: Measuring Cache Performance

* CPU time = Clock cycle time x
(CPU execution clock cycles + Memory stall clock cycles)

— Memory stall clock cycles =
(Reads x Read miss rate x Read miss penalty +
Writes x Write miss rate x Write miss penalty)

— Memory stall clock cycles =
Memory accesses x Miss rate x Miss penalty

* AMAT =
Hit Time + (Miss Rate x Miss Penalty)

Qiiz Note: memory hit time is included in execution cycles.

cs1521 Q) K Meinz Fali 2003 © uca|

Improving Cache Performance: 3 general options

Time = IC x CT x (ideal CPI + memory stalls)

Average Memory Access time =
Hit Time + (Miss Rate x Miss Penalty) =

(Hit Rate x Hit Time) + (Miss Rate x Miss Time)

Options to reduce AMAT:

1. Reduce the miss rate,

2. Reduce the miss penalty, or

3. Reduce the time to hit in the cache.

@ S 15217,)

K Meinz Fail 2003 © ucs]

Review

+ SDRAM/SRAM
— Clocks are good; handshaking is bad!
+ (From a latency perspective.)

* 4 Types of cache misses:
— Compulsory
— Capacity
— Conflict

(Coherence)

* 4 Questions of cache design:
— Placement
— Re-placement
— ldentification (Sorta determined by placement...)
Write Strategy

CS 152172 @

K Meinz Fall 2003 © U

Set of Operations that must be supported

— read: data <= Mem[Physical Address]

— write: Mem[Physical Address] <= Data

Inside it has:
Tag-Data Storage,

Muxes,
Comparators, . . .

Physical Address.

Read/Write

Memory
“Hiack Hox

Data

« Determine the internal register transfers
« Design the Datapath
« Design the Cache Controller

Control

How Do you Design a Memory System?

Cache Points Cachi
DataPath « ache
Address —»| < Controller
«—
Dataln —»|
4 >
DataOut «—| [signals

RIW
Active

wait

CS152172 imization (4)

X Meinz Fall 2003 © ucs]

Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CS 152172 (6)

K Meinz Fail 2003 © ucs]

1. Reduce Misses via Larger Block Size (61c¢)

25%

" 1K

20%
4K

15%

i

Rate ek
10%

—o— 4K

5% —— 256K

0%

= “ 2 g 2
— o
Block Size (bytes)

@ cs152172 @ K Meinz Fall 2003 © ucs)|

Example: Avg. Memory Access Time vs. Miss Rate

* Assume CCT = 1.10 for 2-way, 1.12 for 4-way, 1.14 for 8-
way vs. CCT direct mapped

Lo G A

Eache Size Associativity

(KB) 1-way 2-way 4-way 8-way
1 2.33 2.15 2.07 2.01
2 1.98 1.86 1.76 1.68
4 1.72 1.67 1.61 1.53
8 1.46 1.48 1.47 1.43
16 1.29 1.32 1.32 1.32
32 1.20 1.24 1.25 1.27
64 1.14 1.20 1.21 1.23
128 1.10 1.17 1.18 1.20

(Red means A.M.A.T. not improved by more associativity)

@:suﬂ ization (9)

K Meinz Fall 20030 uca)

4. Reducing Misses by Hardware Prefetching

» E.g., Instruction Prefetching
— Alpha 21064 fetches 2 blocks on a miss
— Extra block placed in “stream buffer”
— On miss check stream buffer

« Works with data blocks too:

— Jouppi [1990] 1 data stream buffer got 25% misses from 4KB
cache; 4 streams got 43%

— Palacharla & Kessler [1994] for scientific programs for 8 streams
got 50% to 70% of misses from
2 64KB, 4-way set associative caches
* Prefetching relies on having extra memory
bandwidth that can be used without penalty
— Could reduce performance if done indiscriminantly!!!

@ S 15217, a1)

K Meinz Fail 2003 © ucs]

2. Reduce Misses via Higher Associativity (61c)

+2:1 Cache Rule:
—Miss Rate DM cache size N ~ Miss Rate 2-way cache
size N/2
* Beware: Execution time is only final
measure!
—Will Clock Cycle time increase?

—Hill [1988] suggested hit time for 2-way vs. 1-way
external cache +10%,
internal + 2%

—Example ...

@ CS152172 10} K Meinz Fall 2003 © UCB

3. Reducing Misses via a “Victim Cache” (New!)

. %—,low t? ((j:pmtt)ine fastdhit
ime of direct mappe Thcs
yet still avoid conﬁ)‘ﬁ)ct DATA
misses?

» Add buffer to place data ll

discarded from cache
* Jouppi [1990]: 4-entry
V|Ct|m Cache removed Tag and Comparator One Cache line of Data
20% to 95% of conflicts ag and Comparator One Cache line of Data
for a 4 KB direct

mapped data cache Tog and Comparator One Cache line of Data
« Used in A|pha’ HP Tag and Gomparator One Cache line of Data
machines [=
Herarchy

CS152172 imization (10)

X Meinz Fall 2003 © ucs]

Improving Cache Performance (Continued)

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CS 152172 (12)

K Meinz Fail 2003 © ucs]

0. Reducing Penalty: Faster DRAM / Interface

* New DRAM Technologies
— Synchronous DRAM
— Double Data Rate SDRAM
- RAMBUS

+ same initial latency, but much higher bandwidth

» Better BUS interfaces

* CRAY Technique: only use SRAM!

@ cs152172 a3) K Meinz Fall 2003 © ucs)|

2. Early Restart and Critical Word First

» Don’t wait for full block to be loaded before
restarting CPU
- Earl{ restart—As soon as the requested word of the
block arrives, send it to the CPU and let the CPU
continue execution
— Critical Word First—Request the missed word first from
memory and send it to the CPU as soon as it arrives;
let the CPU continue execution while filling the rest of
the words in the block. Also called wrapped fetch and
requested word first
— DRAM FOR LAB 5 can do this in burst mode! (Check
out sequential timing)
» Generally useful only in large blocks,
+ Spatial locality a problem; tend to want next
se u?tntlal word, so not clear if benefit by early
resia

%' fzation (15)

K Meinz Fall 20030 uca)

What happens on a Cache miss?
» For in-order pipeline, 2 options:
— Freeze pipeline in Mem stage (popular early on: Sparc, R4000)

IF ID EX Mem stall stall stall .. stall Mem Wr
IF ID EX stall stall stall .. stall stall Ex Wr

— Use Full/Empty bits in registers + MSHR queue
* MSHR = “Miss Status/Handler Registers” (Kroft)
Each entry in this queue keeps track of status of outstanding
memory requests to one complete memory line.
— Per cache-line: keep info about memory address.
— For each word: register (if any) that is waiting for result.
— Used to “merge” multiple requests to one memory line
* New load creates MSHR entry and sets destination register to
“Empty”. Load is “released” from stalling pipeline.
« Attempt to use register before result returns causes instruction to
block in decode stage.
« Limited “out-of-order” execution with respect to loads.
Popular with in-order superscalar architectures.

— Out-of-order pipelines already have this functionality built in... (load queues,
etc).
cs 15217 o) K Meinz Fail 2003 © ucs]

1. Add a (lower) level in the Hierarchy

» Before:
Processor <4—| Cache ¢—————— |
« After:

Processor |4—p| Cache |4—p Cache H—p
DRAM

@cs 152072

(14) K Meinz Fall 2003 © ucs|

3. Reduce Penalty: Non-blocking Caches

» Non-blocking cache or lockup-free cache allow
data cache fo continue to supply cache hits
during a miss
— requires F/E bits on registers or out-of-order execution
— requires multi-bank memories
« “hit under miss”_reduces the effective mjss
penalty by working during miss vs. ignoring CPU
requests
* “hit under multiple miss’ or “miss under miss’
may further lower the effective miss penalty by
overlapping multiple misses
— Significantly increases the complexity of the cache
controller as there can be multiple outstanding memory
accesses

— Requires multiple memory banks (otherwise cannot
support)

— Pentium Pro allows 4 outstanding memory misses

£8152172 imization (16) K Meinz Fall 2003 © uca)

Value of Hit Under Miss for SPEC

2
18

16

14 O o1
12 0->1
. B | g2
W | 264
o8 Base
; [T
o4 “Hit under n Misses”

Integer Floating Point

* FP programs on average: AMAT= 0.68 -> 0.52 -> 0.34 -> 0.26
* Int programs on average: AMAT= 0.24 -> 0.20 -> 0.19 -> 0.19
+ 8 KB Data Cache, Direct Mapped, 32B block, 16 cycle miss

CS 152172 (18)

K Meinz Fail 2003 © ucs]

Improving Cache Performance (Continued)

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

K Meinz Fall 2003 © UCB|

2: Pipelining the Cache! (new!)
» Cache accesses now take multiple
clocks:

— 1 to start the access,
— X (> 0) to finish

—PIll uses 2 stages; PIV takes 4

— Increases hit bandwidth, not latency!

@ cs1521 ion (21)

K Meinz Fall 20030 uca)

3: Way Prediction (new!)

» Does it work?
—You can guess and be right 50%
— Intelligent algorithms can be right ~85%

— Must be able to recover quickly!

—On Alpha 21264:
« Guess right: ICache latency 1 cycle
* Guess wrong: ICache latency 3 cycles
« (Presumably, without way-predict would require

g E push clock period or #cycles/hit.)

K Meinz Fail 2003 © ucs]

1. Add a (higher) level in the Hierarchy (61c)

» Before:
DRAM
Processor ${ Cache
[—
o After:

DRAM

@cs 152072 29

K Meinz Fall 2003 © U

3: Way Prediction (new!)

* Remember: Associativity negatively
impacts hit time.

* We can recover some of that time by
pre-selecting one of the sets.

* Every block in the cache has a field that says
which index in the set to try on the next access.
Pre-select mux to that field.

* Guess right: Avoid mux propagate time

» Guess wrong: Recover and choose other index

— Costs you a cycle or two.

CS152172 imization (22)

X Meinz Fall 2003 © ucs]

PRS: Load Prediction (new!)

» Load-Value Prediction:

— Small table of recent load instruction
addresses, resulting data values, and
confidence indicators.

—On a load, look in the table. If a value exists
and the confidence is high enough, use that
value. Meanwhile, do the cache access ...

« If the guess was correct: increase confidence
bit and keep going

« If the guess was incorrect: quash the pipe and
restart with correct value.

CS 152172 24)

K Meinz Fail 2003 © ucs]

PRS: Load Prediction

* So, will it work?
« If so, what factor will it improve
« If not, why not?

1. No way! - There is no such thing as data locality!

2. No way! - Load-value mispredi 1s are too exp ive!

3. Oh yeah! — Load prediction will decrease hit time

4. Oh yeah! - Load prediction will decrease the miss penalty

5. Oh yeah! - Load prediction will decrease miss rates

6)1and 2 7)3and4 8)4and5 9)3and 5 10) None!

@ css2172 25

K Meinz Fall 2003 © UCB|

Memory Summary 2/ 3:

« The Principle of Locality:
— Program likely to access a relatively small portion of the address space
at any instant of time.
« Temporal Locality: Locality in Time
* Spatial Locality: Locality in Space
« Three (+1) Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Conlflict Misses: increase cache size and/or associativity.
Nightmare Scenario: ping pong effect!
— Capacity Misses: increase cache size
— Coherence Misses: Caused by external processors or I/O devices
« Cache Design Space
— total size, block size, associativity
— replacement policy
— write-hit policy (write-through, write-back)
— write-miss policy

@:suﬂ ization (27)

K Meinz Fall 20030 uca)

@cs 152072 28)

Memory Summary (1/3)

Two Different Types of Locality:
— Temporal Locality (Locality in Time): If an item is referenced, it will tend to
be referenced again soon.
— Spatial Locality (Locality in Space): If an item is referenced, items whose
addresses are close by tend to be referenced soon.
SRAM is fast but expensive and not very dense:
— 6-Transistor cell (no static current) or 4-Transistor cell (static current)
— Does not need to be refreshed
— Good choice for providing the user FAST access time.
— Typically used for CACHE
DRAM is slow but cheap and dense:
— 1-Transistor cell (+ trench capacitor)
— Must be refreshed
— Good choice for presenting the user with a BIG memory system
— Both asynchronous and synchronous versions
— Limited signal requires “sense-amplifiers” to recover

K Meinz Fall 2003 © U

CS152172 imization (28)

Summary 3 / 3: The Cache Design Space

+ Several interacting dimensions Cache Size
— cache size
— block size
— associativity
— replacement policy
— write-through vs write-back
— write allocation
» The optimal choice is a compromise
— depends on access characteristics
« workload
« use (l-cache, D-cache, TLB)
— depends on technology / cost Good
» Simplicity often wins Less More

Associativity

Block Size

\/

Factor A Factor B

X Meinz Fall 2003 © ucs]

