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Road to Faster Processors

• Time = Instruction Count x CPI x Clock 
cycle time

• How get a shorter Clock Cycle Time?
• Can we get CPI < 1?
• Can we reduce pipeline stalls for cache 

misses, hazards, … ? 
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Fast Clock Cycle Time

• For a given technology, 
shorter clock cycle time 
=> less work clock cycle
=> longer pipeline to accomplish task

• Deep pipelines (“superpipelined”) to get 
high clock rate, low clock cycle times

• 5 pipeline stages MIPS 2000…
=>   8 pipeline stages MIPS 4000 
=> 10 pipeline stages Pentium Pro
=> 20 pipeline stages Pentium 4
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Case Study: MIPS R4000

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens here

as well as initiation of instruction cache access.
– IS–second half of access to instruction cache. 
– RF–instruction decode and register fetch, hazard checking and 

also instruction cache hit detection.
– EX–execution, which includes effective address calculation, ALU 

operation, and branch target computation and condition 
evaluation.

– DF–data fetch, first half of access to data cache.
– DS–second half of access to data cache.
– TC–tag check, determine whether the data cache access hit.
– WB–write back for loads and register-register operations.

• 8 Stages: 
What is impact on Load delay? Branch delay? Why?
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Case Study: MIPS R4000
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Recall: Compute CPI?
• Start with Base CPI
• Add stalls

2211 −−−− ×+×=

+=

typetypetypetypestall

stallbase

freqSTALLfreqSTALLCPI
CPICPICPI

• Suppose: 
– CPIbase=1
– Freqbranch=20%, freqload=30%
– Suppose branches always cause 1 cycle stall
– Loads cause a 100 cycle stall 1% of time

• Then: CPI = 1 + (1×0.20)+(100 × 0.30×0.01)=1.5
• Multicycle?  Could treat as: 

CPIstall=(CYCLES-CPIbase) × freqinst
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Case Study: MIPS R4000 (200 MHz)

• 8 Stage Pipeline:
– IF–first half of fetching of instruction; PC selection happens here

as well as initiation of instruction cache access.
– IS–second half of access to instruction cache.
– RF–instruction decode and register fetch, hazard checking and 

also instruction cache hit detection.
– EX–execution, which includes effective address calculation, 

ALU operation, and branch target computation and condition 
evaluation.

– DF–data fetch, first half of access to data cache.
– DS–second half of access to data cache.
– TC–tag check, determine whether the data cache access hit.
– WB–write back for loads and register-register operations.

• 8 Stages: 
What is impact on Load delay? Branch delay? Why?
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Case Study: MIPS R4000
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MIPS R4000 Floating Point

• FP Adder, FP Multiplier, FP Divider
• Last step of FP Multiplier/Divider uses FP Adder HW
• 8 kinds of stages in FP units:

Stage Functional unit Description
A FP adder Mantissa ADD stage 
D FP divider Divide pipeline stage
E FP multiplier Exception test stage
M FP multiplier First stage of multiplier
N FP multiplier Second stage of multiplier
R FP adder Rounding stage
S FP adder Operand shift stage
U Unpack FP numbers
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MIPS FP Pipe Stages
FP Instr 1 2 3 4 5 6 7 8 …
Add, Subtract U S+A A+R R+S
Multiply U E+M M M M N N+A R
Divide U A R D28 … D+A D+R, D+R, D+A, D+R, A, 

R
Square root U E (A+R)108 … A R
Negate U S
Absolute value U S
FP compare U A R
Stages:

M First stage of multiplier
N Second stage of multiplier
R Rounding stage
S Operand shift stage
U Unpack FP numbers

A Mantissa ADD stage 
D Divide pipeline stage
E Exception test stage
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R4000 Performance
• Not ideal CPI of 1:

– FP structural stalls: Not enough FP hardware (parallelism)
– FP result stalls: RAW data hazard (latency)
– Branch stalls (2 cycles + unfilled slots)
– Load stalls (1 or 2 clock cycles)
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Can we somehow make CPI closer to 1?
• Let’s assume full pipelining:

– If we have a 4-cycle instruction, then we need 3 instructions 
between a producing instruction and its use:

multf $F0,$F2,$F4
delay-1
delay-2
delay-3
addf $F6,$F10,$F0

Fetch Decode Ex1 Ex2 Ex3 Ex4 WB

multfdelay1delay2delay3addf

Earliest forwarding for 
4-cycle instructions

Earliest forwarding for
1-cycle instructions
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FP Loop: Where are the Hazards?
Loop: LD F0,0(R1) ;F0=vector element

ADDD F4,F0,F2 ;add scalar from F2
SD 0(R1),F4 ;store result
SUBI R1,R1,8 ;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch R1!=zero
NOP ;delayed branch slot

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1
Load double Store double 0
Integer op Integer op 0

• Where are the stalls?
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FP Loop Showing Stalls

• 9 clocks (10 if SUBI/BNEZ is a stall): Rewrite 
code to minimize stalls?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1

1 Loop: LD F0,0(R1) ;F0=vector element
2 stall
3 ADDD F4,F0,F2 ;add scalar in F2
4 stall
5 stall
6 SD 0(R1),F4 ;store result
7 SUBI R1,R1,8 ;decrement pointer 8B (DW)
8 BNEZ R1,Loop ;branch R1!=zero
9 stall ;delayed branch slot
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Revised FP Loop Minimizing Stalls

6 clocks: Unroll loop 4 times code to make  faster?

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALU op Store double 2 
Load double FP ALU op 1

1 Loop: LD F0,0(R1)
2 stall
3 ADDD F4,F0,F2
4 SUBI R1,R1,8
5 BNEZ R1,Loop ;delayed branch
6 SD 8(R1),F4 ;altered when move past SUBI

Swap BNEZ and SD by changing address of SD
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1 Loop:LD F0,0(R1)
2 ADDD F4,F0,F2
3 SD 0(R1),F4 ;drop SUBI & BNEZ
4 LD F6,-8(R1)
5 ADDD F8,F6,F2
6 SD -8(R1),F8 ;drop SUBI & BNEZ
7 LD F10,-16(R1)
8 ADDD F12,F10,F2
9 SD -16(R1),F12 ;drop SUBI & BNEZ
10 LD F14,-24(R1)
11 ADDD F16,F14,F2
12 SD -24(R1),F16
13 SUBI R1,R1,#32 ;alter to 4*8
14 BNEZ R1,LOOP
15 NOP

15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
(Assumes R1 is multiple of 4)

CPI = 27/15 = 1.8

Unroll Loop Four Times (straightforward way)

Rewrite loop 
to minimize 
stalls?

1 cycle stall
2 cycles stall
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• What assumptions made 
when moved code?

– OK to move store past 
SUBI even though  SUBI 
changes register value

– OK to move loads before 
stores: get right data?

– When is it safe for 
compiler to do such 
changes?

1 Loop:LD F0,0(R1)
2 LD F6,-8(R1)
3 LD F10,-16(R1)
4 LD F14,-24(R1)
5 ADDD F4,F0,F2
6 ADDD F8,F6,F2
7 ADDD F12,F10,F2
8 ADDD F16,F14,F2
9 SD 0(R1),F4
10 SD -8(R1),F8
11 SD -16(R1),F12
12 SUBI R1,R1,#32
13 BNEZ R1,LOOP
14 SD 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration
CPI = 14/14 = 1

When safe to move instructions?

Unrolled Loop That Minimizes Stalls
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Administrivia
• Lab 5/6 Design Doc Due Sunday by 9 PM

– Meet tomorrow with TA to go over plan Monday
• Mon 10/20: HW 3 due
• Design full cache, but only demo reads on 

Friday 10/24; demo writes on Friday 10/31
• Thurs 11/6: Design Doc for Final Project due

– Deep pipeline? Superscalar? Out-of-order?
• Friday 11/14: Demo Project modules
• Monday 12/1: Demo Project to T.A.s
• Tuesday 12/2: 30 min oral presentation
• Wednesday 12/3: Processor racing
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• Two main variations: Superscalar and VLIW
• Superscalar: varying no. instructions/cycle (1 to 6)

– Parallelism and dependencies determined/resolved by HW
– Intel Pentium IV, IBM PowerPC G5, Sun UltraSparc,… 
– Very Long Instruction Words (VLIW): fixed number of instructions

(16) parallelism determined by compiler
– Pipeline is exposed; compiler must schedule delays to get right 

result

• Explicit Parallel Instruction Computer (EPIC)/ Intel Titanium
– 128 bit packets containing 3 instructions (can execute sequentially)
– Can link 128 bit packets together to allow more parallelism
– Compiler determines parallelism, 

HW checks dependencies and fowards/stalls

Getting CPI < 1: Issuing Multiple Instructions/Cycle
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• Simple Superscalar MIPS: 2 instructions, 1 FP & 1 anything
– Fetch 64-bits/clock cycle; Int on left, FP on right
– Can only issue 2nd instruction if 1st instruction issues
– More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB
Int. instruction IF ID EX MEM WB
FP instruction IF ID EX MEM WB

• 1 cycle load delay expands to 3 instructions in SS
– instruction in right half can’t use it, nor instructions in next slot

Getting CPI < 1: Issuing Multiple Instructions/Cycle
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Integer instruction FP instruction Clock cycle

Loop: LD    F0,0(R1) 1

LD    F6,-8(R1) 2

LD    F10,-16(R1) ADDD F4,F0,F2 3

LD    F14,-24(R1) ADDD F8,F6,F2 4

LD    F18,-32(R1) ADDD F12,F10,F2 5

SD    0(R1),F4 ADDD F16,F14,F2 6

SD    -8(R1),F8 ADDD F20,F18,F2 7

SD    -16(R1),F12 8

SD    -24(R1),F16 9

SUBI   R1,R1,#40 10

BNEZ  R1,LOOP 11

SD    -32(R1),F20 12

Loop Unrolling in Superscalar

• Unrolled 5 times to avoid delays (+1 due to SS)
• 12 clocks, or 2.4 clocks per iteration
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Superscalar evolution

• 2 instructions (“2-scalar”): 
1 FP + 1 everything
– MIPS: 64-bit aligned in memory/cache

• 2 instructions: 1 anything +  1 anything 
but load/store (only 1 load/store per pair)
– No alignment restrictions

• 3 - 4 instructions (“3 or 4-scalar”): 
1 load/store + 3 anything else

• 3 - 6 instructions from a window of read 
to execute instructions: up to 2 
load/store + rest anything else
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Problems?

• How do we prevent WAR and WAW hazards?
• How do we deal with variable latency?  

– Forwarding for RAW hazards harder.

Clock Cycle Number

Instruction 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

LD F6,34(R2) IF ID EX MEM WB
LD F2,45(R3) IF ID EX MEM WB
MULTD F0,F2,F4 IF ID stall M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 MEM WB
SUBD F8,F6,F2 IF ID A1 A2 MEM WB
DIVD F10,F0,F6 IF ID stall stall stall stall stall stall stall stall stall D1 D2
ADDD F6,F8,F2 IF ID A1 A2 MEM WB

RAW

WAR
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What about FETCH?  Independent “Fetch” unit

Instruction Fetch
with 

Branch Prediction

Out-Of-Order
Execution

Unit

Correctness Feedback
On Branch Results

Stream of Instructions
To Execute

• Instruction fetch decoupled from execution
• Often issue logic (+ rename) included with Fetch
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Branches must be resolved quickly for loop overlap!
• In loop-unrolling example, we assumed branches were 

under control of “fast” integer unit in order to get overlap!  

Loop: LD F0 0 R1
MULTDF4 F0 F2
SD F4 0 R1
SUBI R1 R1 #8
BNEZ R1 Loop

• What happens if branch depends on result of multd??

– We completely lose all of our advantages!
– Need to be able to “predict” branch outcome.
– If we were to predict that branch was taken, this 

would be right most of the time.  
• Problem much worse for superscalar machines!
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• Prediction has become essential to getting good 
performance from scalar instruction streams.

• We will discuss predicting branches.  However, architects 
are now predicting everything: 
data dependencies, actual data, and results of groups of 
instructions:
– At what point does computation become a probabilistic operation 

+ verification?
– We are pretty close with control hazards already…

• Why does prediction work?
– Underlying algorithm has regularities.
– Data that is being operated on has regularities.
– Instruction sequence has redundancies that are artifacts of way 

that humans/compilers think about problems.

• Prediction ⇒ Compressible information streams?

Prediction: Branches, Dependencies, Data
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Dynamic Branch Prediction
• Prediction could be “Static” (at compile time) or 

“Dynamic” (at runtime)
– For our example, if we were to statically 

predict “taken”, we would only be wrong once 
each pass through loop

• Is dynamic branch prediction better than static branch 
prediction?
– Seems to be.  Still some debate to this effect
– Today, lots of hardware being devoted to 

dynamic branch predictors.
• Does branch prediction make sense for 5-stage, in-order 

pipeline?  What about 8-stage pipeline?
– Perhaps: eliminate branch delay slots/then predict branches
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• Address of branch index to get prediction AND branch address (if taken)
– Must check for branch match now, since can’t use wrong branch address
– Grab predicted PC from table since may take several cycles to compute

• Update predicted PC when branch is actually resolved
• Return instruction addresses predicted with stack

Branch PC Predicted PC

=?

PC of instruction
FET

CH

Predict taken or untaken

Simple dynamic prediction: Branch Target Buffer (BTB)
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Branch History Table (BHT)

• BHT is a table of “Predictors”
– Could be 1-bit, could be complete state machine
– Indexed by PC address of Branch – without tags

• In Fetch state of branch:
– BTB identifies branch
– Predictor from BHT used to make prediction

• When branch completes
– Update corresponding Predictor

Predictor 0

Predictor 7

Predictor 1

Branch PC
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Dynamic Branch Prediction: Usual Division

• Branch Target Buffer (BTB): identify branches and hold taken 
addresses
– Trick: identify branch before fetching instruction!

• Branch History Table(BHT)
– Table makes prediction by keeping long-term history

• Example: Simple 1-bit BHT: keep last direction of branch
– No address check: Can be good, can be bad….

• Problem: in a loop, 1-bit BHT will cause two mispredictions
(avg. is 9 iterations before exit):
– End of loop case, when it exits instead of  looping as before
– First time through loop on next time through code, when it predicts exit 

instead of looping
• Performance = ƒ(accuracy, cost of misprediction)

– Misprediction ⇒ Flush Reorder Buffer
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• Solution: 2-bit scheme where change prediction 
only if get misprediction twice:

• Red: stop, not taken
• Green: go, taken
• Adds hysteresis to decision making process

Dynamic Branch Prediction: 2-bit predictor

T

T
NT

NT

Predict Taken

Predict Not 
Taken

Predict Taken

Predict Not 
TakenT

NT

T

NT
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BHT Accuracy

• Mispredict because either:
– Wrong guess for that branch
– Got branch history of wrong branch when 

index the table
• 4096 entry table  programs vary from 

1% misprediction (nasa7, tomcatv) to 
18% (eqntott), with spice at 9% and gcc
at 12%

• 4096 about as good as infinite table
(in Alpha 21164)
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Correlating Branches
• Hypothesis: recent branches are correlated; that is, behavior of recently 

executed branches affects prediction of current branch
• Two possibilities; Current branch depends on:

– Last m most recently executed branches anywhere in program
Produces a “GA” (for “global address”) in the Yeh and Patt classification (e.g. 
GAg)

– Last m most recent outcomes of same branch.
Produces a “PA” (for “per address”) in same classification (e.g. PAg)

• Idea: record m most recently executed branches as taken or not taken, 
and use that pattern to select the proper branch history table entry
– A single history table shared by all branches (appends a “g” at end), indexed 

by history value.
– Address is used along with history to select table entry (appends a “p” at end 

of classification)
– If only portion of address used, often appends an “s” to indicate “set-indexed” 

tables (I.e. GAs) 
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Correlating Branches

(2,2) GAs predictor
– First 2 means that we keep two 

bits of history
– Second means that we have 2 

bit counters in each slot.
– Then behavior of recent 

branches selects between, say, 
four predictions of next branch, 
updating just that prediction 

– Note that the original two-bit 
counter solution would be a (0,2) 
GAs predictor

– Note also that aliasing is 
possible here...

Branch address

2-bits per branch predictors

PredictionPrediction

2-bit global branch history register

• For instance, consider global history, set-indexed BHT. 
That gives us a GAs history table. 

Each slot is
2-bit counter
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Peer : Superpipelined (SP) v. Supersclar (SS)

• Which are true? Assume the same 
technology and design effort

A. SP likely has a higher clock rate than SS
B. SP likely has a higher CPI than SS
C. A 10-stage SP has the same peak 

instruction fetch bandwidth as a 5-stage SS
1.ABC: FFF
2.ABC: FFT
3.ABC: FTF
4.ABC: FTT

5. ABC: TFF
6. ABC: TFT
7. ABC: TTF
8. ABC: TTT
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Peer: Superpipelined (SP) v. Supersclar (SS)

• Assume a 10-stage SP vs. as a 5-stage SS
A. You would expect the latency of the SP 

instruction cache to be half that of SS
B. The branch delay for SP is (likely) longer than 

the 1-instruction branch delay of SS
C. Although SP has a faster clock rate, SS is 

likely faster since it has fewer pipeline hazards
1.ABC: FFF
2.ABC: FFT
3.ABC: FTF
4.ABC: FTT

5. ABC: TFF
6. ABC: TFT
7. ABC: TTF
8. ABC: TTT
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Peer: SP, SS, and Branch Prediction

• Assume a 10-stage SP vs. as a 5-stage SS
A. Branch prediction more important for SP v. SS 
B. 2-bit branch predictor is useful for beq, bne
C.2-bit branch predictor is useful for jr

1.ABC: FFF
2.ABC: FFT
3.ABC: FTF
4.ABC: FTT

5. ABC: TFF
6. ABC: TFT
7. ABC: TTF
8. ABC: TTT
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Low CPI vs. Limits of Superscalar

• While Integer/FP split is simple for the HW, get 
CPI of 0.5 only for programs with:
– Exactly 50% FP operations
– No hazards

• If more instructions issue at same time, harder to 
decode and issue
– Even 2-scalar => compare 2 opcodes, 6 register 

specifiers, & decide if 1 or 2  instructions can issue
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VLIW: Very Long Instruction Word

• Tradeoff instruction space for simple decoding
• The long instruction word has room for many 

operations
• By definition, all the operations the compiler puts in 

the long instruction word can execute in parallel
• E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 

1 branch
– 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 

bits wide
• Need compiling technique that schedules across 

several branches to have enough instructions
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Superscalar v. VLIW

• Smaller code size
• Binary 

compatibility 
across generations 
of hardware

• Simplified Hardware 
for decoding, issuing 
instructions

• No Interlock Hardware 
(compiler checks?)

• More registers, but 
simplified Hardware 
for Register Ports 
(multiple independent 
register files?)
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Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch
LD F0,0(R1) LD F6,-8(R1) 1

LD F10,-16(R1) LD F14,-24(R1) 2

LD F18,-32(R1) LD F22,-40(R1) ADDD F4, F0, F2 ADDD F8,F6,F2 3

LD F26,-48(R1) ADDD F12, F10, F2 ADDD F16,F14,F2 4

ADDD F20, F18, F2 ADDD F24,F22,F2 5

SD 0(R1),F4 SD -8(R1),F8 ADDD F28, F26, F2 6

SD -16(R1),F12 SD -24(R1),F16 7

SD -32(R1),F20 SD -40(R1),F24 SUBI  R1,R1,#48 8

SD -0(R1),F28 BNEZ R1,LOOP 9

Loop Unrolling in VLIW

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration
Need more registers in VLIW(EPIC => 128int + 128FP)
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Problems with First Generation VLIW
• Increase in code size

– generating enough operations in a straight-line code fragment 
requires ambitiously unrolling loops

– whenever VLIW instructions are not full, unused functional units
translate to wasted bits in instruction encoding

• Operated in lock-step; no hazard detection HW
– a stall in any functional unit pipeline caused entire processor to 

stall, since all functional units must be kept synchronized
– Compiler might prediction function units, but caches hard to predict

• Binary code compatibility
– Pure VLIW => different numbers of functional units and unit 

latencies require different versions of the code
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Intel/HP IA-64 “Explicitly Parallel 
Instruction Computer (EPIC)”

• IA-64: instruction set architecture; EPIC is type
– EPIC = 2nd generation VLIW

• Itanium™ is name of first implementation (2001)
– Highly parallel and deeply pipelined hardware at 800Mhz
– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• 128 64-bit integer registers + 128 82-bit floating point 
registers

– Not separate register files per functional unit as in old VLIW
• Hardware checks dependencies 

(interlocks => binary compatibility over time)
• Predicated execution (select 1 out of 64 1-bit flags) 

=> 40% fewer mispredictions?
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Intel/HP IA-64 “Explicitly Parallel 
Instruction Computer (EPIC)”

• Instruction group: a sequence of consecutive instructions 
with no register data dependences

– All the instructions in a group could be executed in parallel, if 
sufficient hardware resources existed and if any dependences 
through memory were preserved

– An instruction group can be arbitrarily long, but the compiler must 
explicitly indicate the boundary between one instruction group and 
another by placing a stop between 2 instructions that belong to 
different groups

• IA-64 instructions are encoded in bundles, which are 128 
bits wide. 

– Each bundle consists of a 5-bit template field and 3 instructions, each 
41 bits in length

• 3 Instructions in 128 bit “groups”; field determines if instructions 
dependent or independent

– Smaller code size than old VLIW, larger than x86/RISC
– Groups can be linked to show independence > 3 instr
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5 Types of Execution in Bundle

Execution Instruction Instruction Example
Unit Slot type Description Instructions
I-unit A Integer ALU add, subtract, and, or, cmp

I Non-ALU Int shifts, bit tests, moves
M-unit A Integer ALU add, subtract, and, or, cmp

M Memory access Loads, stores for int/FP regs
F-unit F Floating point Floating point instructions
B-unit B Branches Conditional branches, calls 
L+X L+X Extended Extended immediates, stops

• 5-bit template field within each bundle describes 
both the presence of any stops associated with the 
bundle and the execution unit type required by each 
instruction within the bundle
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IA-64 Registers
• The integer registers are configured to help accelerate 

procedure calls using a register stack 
– mechanism similar to that developed in the Berkeley RISC-I 

processor and used in the SPARC architecture. 
– Registers 0-31 are always accessible and addressed as 0-31
– Registers 32-128 are used as a register stack and each procedure 

is allocated a set of registers (from 0 to 96)
– The new register stack frame is created for a called procedure by 

renaming the registers in hardware; 
– a special register called the current frame pointer (CFM) points to 

the set of registers to be used by a given procedure

• 8 64-bit Branch registers used to hold branch destination 
addresses for indirect branches

• 64 1-bit predict registers
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FPUIA-32
Control

Instr.
Fetch &
Decode Cache

Cache

TLB

Integer Units

IA-64 Control

Bus

Core Processor Die 4 x 1MB L3 cache 

Itanium™ Processor Silicon
(Copyright: Intel at Hotchips ’00)
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Itanium™ Machine Characteristics
(Copyright: Intel at Hotchips ’00)

Organic Land Grid ArrayPackage
0.18u CMOS, 6 metal layerProcess
25.4M CPU; 295M L3Transistor Count
800 MHzFrequency

2.1 GB/sec; 4-way Glueless MPSystem Bus
4MB, 4-way s.a., BW of 12.8 GB/sec; L3 Cache

Dual ported 96K Unified & 16KD;  16KIL2/L1 Cache 
6 / 2 clocksL2/L1 Latency

Scalable to large (512+ proc) systems

64 entry ITLB, 32/96 2-level DTLB, VHPTVirtual Memory Support

6 insts/clock  (4 ALU/MM, 2 Ld/St, 2 FP, 3 Br)Machine Width

3.2 GFlops (DP/EP); 6.4 GFlops (SP)FP Compute Bandwidth
4 DP (8 SP) operands/clockMemory -> FP Bandwidth

14 ported 128 GR & 128 FR; 64 Predicates
32 entry ALAT, Exception DeferralSpeculation

Registers

Branch Prediction Multilevel 4-stage Prediction Hierarchy
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Branch   
Hints

Memory 
Hints

Instruction
Cache

& Branch
Predictors

FetchFetch Memory Memory 
SubsystemSubsystem

Three 
levels of 
cache:
L1, L2, L3

Register 
Stack 
& Rotation

Explicit 
Parallelism

128 GR &
128 FR,
Register
Remap

&
Stack 
Engine

Register Register 
HandlingHandling

Fast, Sim
ple 6-Issue

IssueIssue ControlControl

MicroMicro--architecture Features  in hardwarearchitecture Features  in hardware: : 

Itanium™ EPIC Design Maximizes SW-HW Synergy
(Copyright: Intel at Hotchips ’00)

Architecture Features programmed by compiler::

Predication Data & Control
Speculation

B
ypasses &

 D
ependencies

Parallel  ResourcesParallel  Resources

4 Integer + 
4 MMX  Units

2 FMACs  
(4 for SSE)

2 L.D/ST units

32 entry ALAT

Speculation Deferral Management
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10 Stage In-Order Core Pipeline
(Copyright: Intel at Hotchips ’00)

Front EndFront End
•• PrePre--fetch/Fetch of up   fetch/Fetch of up   
to 6 instructions/cycleto 6 instructions/cycle

•• Hierarchy of branch Hierarchy of branch 
predictorspredictors

•• Decoupling bufferDecoupling buffer

Instruction DeliveryInstruction Delivery
•• Dispersal of up to 6 Dispersal of up to 6 
instructions on 9 portsinstructions on 9 ports

•• Reg. remappingReg. remapping
•• Reg. stack engineReg. stack engine

Operand DeliveryOperand Delivery
•• RegReg read + Bypasses read + Bypasses 
•• Register scoreboardRegister scoreboard
•• Predicated Predicated 

dependencies  dependencies  

ExecutionExecution
•• 4 single cycle4 single cycle ALUsALUs, 2 ld/, 2 ld/strstr
•• Advanced load control Advanced load control 
•• Predicate delivery & branchPredicate delivery & branch
•• Nat/Exception/Nat/Exception///RetirementRetirement

IPG FET ROT EXP REN REG EXE DET WRBWL.D

REGISTER READ
WORD-LINE
DECODERENAMEEXPAND

INST POINTER 
GENERATION

FETCH ROTATE EXCEPTION
DETECT

EXECUTE WRITE-BACK
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Itanium processor 10-stage pipeline

• Front-end (stages IPG, Fetch, and Rotate): 
prefetches up to 32 bytes per clock (2 
bundles) into a prefetch buffer, which can 
hold up to 8 bundles (24 instructions) 
– Branch prediction is done using a multilevel 

adaptive predictor like P6 microarchitecture
• Instruction delivery (stages EXP and REN): 

distributes up to 6 instructions to the 9 
functional units 
– Implements registers renaming for both rotation 

and register stacking.
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Itanium processor 10-stage pipeline

• Operand delivery (WLD and REG): accesses 
register file, performs register bypassing, accesses 
and updates a register scoreboard, and checks 
predicate dependences. 
– Scoreboard used to detect when individual instructions 

can proceed, so that a stall of 1 instruction in a bundle 
need not cause the entire bundle to stall

• Execution (EXE, DET, and WRB): executes 
instructions through ALUs and load/store units, 
detects exceptions and posts NaTs, retires 
instructions and performs write-back
– Deferred exception handling for speculative instructions is 

supported by providing the equivalent of poison bits, 
called NaTs for Not a Thing, for the GPRs (which makes 
the GPRs effectively 65 bits wide), and NaT Val (Not a 
Thing Value) for FPRs (already 82 bits wides) 
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Comments on Itanium

• Remarkably, the Itanium has many of the 
features more commonly associated with the 
dynamically-scheduled pipelines
– strong emphasis on branch prediction, register 

renaming, scoreboarding, a deep pipeline with 
many stages before execution (to handle 
instruction alignment, renaming, etc.), and 
several stages following execution to handle 
exception detection

• Surprising that an approach whose goal is to 
rely on compiler technology and simpler HW 
seems to be at least as complex as 
dynamically scheduled processors!
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Cost (Microprocessor Report, 8/25/03)

• 3X die size Pentium 4, 1/3 clock rate Pentium 4
• Cache size (KB): 16+16+256+3076 v. 12+8+512
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Performance (Microprocessor Report, 8/25/03)
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Peformance of IA-64 Itanium?
• Whether this approach will result in 

significantly higher performance than 
other recent processors is unclear 

• The clock rate of Itanium (733 MHz) 
and Itanium II (1.0 GHz)  is 
competitive but slower than the clock 
rates of several dynamically-
scheduled machines, which are 
already available, including the Intel 
Pentium 4 and AMD Operteron
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Summary

• Loop unrolling  ⇒ Multiple iterations of loop in SW:
– Amortizes loop overhead over several iterations
– Gives more opportunity for scheduling around stalls

• Very Long Instruction Word machines (VLIW)
⇒ Multiple operations coded in single, long instruction
– Requires sophisticated compiler to decide which 

operations can be done in parallel
– Trace scheduling ⇒ find common path and 

schedule code as if branches didn’t exist (+ add 
“fixup code”)

• Both require additional registers


