CS152 — Computer Architecture and
Engineering
Lecture 15 — Advanced Pipelining

2003-10-16

Dave Patterson
(www.cs.berkeley.edu/~patterson)

www-inst.eecs.berkeley.edu/~cs152/

ﬂ CS 152 L15 Adyv. Pipe. (1) Patterson Fall 2003 © UCB




Road to Faster Processors

 Time = Instruction Count x CPI x Clock
cycle time

* How get a shorter Clock Cycle Time?
« Can we get CPI <17

« Can we reduce pipeline stalls for cache
misses, hazards, ... ?

ﬂ CS 152 L15 Adyv. Pipe. (2) Patterson Fall 2003 © UCB



Fast Clock Cycle Time

* For a given technology,
shorter clock cycle time
=> |ess work clock cycle
=> |onger pipeline to accomplish task
* Deep pipelines (“superpipelined”) to get
high clock rate, low clock cycle times
. 5 pipeline stages MIPS 2000...
=> 8 pipeline stages MIPS 4000

=> 10 pipeline stages Pentium Pro
=> 20 pipeline stages Pentium 4

ﬂ CS 152 L15 Adv. Pipe. (3) Patterson Fall 2003 © UCB




Case Study: MIPS R4000

« 8 Stage Pipeline:

— IFfirst half of fetching of instruction; PC selection happens here
as well as initiation of instruction cache access.

— |S—second half of access to instruction cache.

— RF—instruction decode and register fetch, hazard checking and
also instruction cache hit detection.

— EX—execution, which includes effective address calculation, ALU
operation, and branch target computation and condition
evaluation.

— DF—data fetch, first half of access to data cache.

— DS—second half of access to data cache.

— TC—tag check, determine whether the data cache access hit.
— WB-write back for loads and register-register operations.

« 8 Stages:
2 ?What IS impact on Load delay? Branch delay? Why?

CS 152 L15 Adyv. Pipe. (4) Patterson Fall 2003 © UCB



Case Study: MIPS R4000

TWO Cycle IF IS RF EX DF [pg Tc wa
IF IS RF EX DF\ DS TC

Load Latency
IF IS RF EX 4DF DS
IF IS RF [EX|] DF
IF IS RF EX
IF IS RF
IF IS
IF
THREE Cycle IF IS RF [EXI DF DS TC WB
Branch Latency IF IS RF\ EX DF DS TC
(conditions evaluated IF IS\ RF EX DF DS
during EX phase) IF VIS RF EX DF
IF] IS RF EX

Delay slot plus two stalls

: : IF IS RF
Branch likely cancels delay slot if not taken IF IS

IF

ﬂ CS 152 L15 Adv. Pipe. (5) Patterson Fall 2003 © UCB




Recall: Compute CPI?

« Start with Base CPI
« Add stalls

CPI =CPI,,, +CPI
CPI

=STALL,,, % freq,,, ,+STALL, , ,x freq,,, ,

stall

stall

* Suppose:
_ CI:)Ibase=/I
— Freq, ,nen=20%, freq,,,4.=30%
— Suppose branches always cause 1 cycle stall
— Loads cause a 100 cycle stall 1% of time

« Then: CPl = 1 + (1x0.20)+(100 x 0.30x0.01)=1.5

* Multicycle? Could treat as:
CPl,,=(CYCLES-CPI__,..) x freq;

stall™

CS 152 L15 Adyv. Pipe. (6) Patterson Fall 2003 © UCB



Case Study: MIPS R4000 (200 MHz)

« 8 Stage Pipeline:

— IFfirst half of fetching of instruction; PC selection happens here
as well as initiation of instruction cache access.

— |S—second half of access to instruction cache.

— RF—instruction decode and register fetch, hazard checking and
also instruction cache hit detection.

— EX—execution, which includes effective address calculation,
ALU operation, and branch target computation and condition
evaluation.

— DF—data fetch, first half of access to data cache.

— DS—second half of access to data cache.

— TC—tag check, determine whether the data cache access hit.
— WB—write back for loads and register-register operations.

« 8 Stages:
What is impact on Load delay? Branch delay? Why?

ﬂ CS 152 L15 Adyv. Pipe. (7) Patterson Fall 2003 © UCB




Case Study:
TWO Cycle IF
Load Latency
THREE Cycle IF

Branch Latency

(conditions evaluated
during EX phase)

Delay slot plus two stalls

MIPS R4000

IS
IF

IS
IF

RF
IS
IF

RF
IS
IF

EX DF
RF  EX
IS RF
IF IS

IF
EX DF
RF\ EX
IS\ RF
IF ¥ IS

IF

Branch likely cancels delay slot if not taken

ﬂ CS 152 L15 Adv. Pipe. (8)

DS

DF
EX
RF
IS
IF

DS
DF
EX
RF
IS
IF

TC
DS
DF

EX

RF
IS
IF

TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

WB
TC
DS
DF
EX
RF
IS
IF

Patterson Fall 2003 © UCB



MIPS R4000 Floating Point

 FP Adder, FP Multiplier, FP Divider
» Last step of FP Multiplier/Divider uses FP Adder HW

« 8 kinds of stages in FP units:
Stage Functional unit Description

A FP adder Mantissa ADD stage

D FP divider Divide pipeline stage

E FP multiplier  Exception test stage

M FP multiplier  First stage of multiplier

N FP multiplier  Second stage of multiplier
R FP adder Rounding stage

S FP adder Operand shift stage

U

Unpack FP numbers

ﬂ CS 152 L15 Adv. Pipe. (9) Patterson Fall 2003 © UCB



MIPS FP Pipe Stages

FP Instr 1 2 3 4 5 6 / 8

Add, Subtract U S+A A+R R+S

Multiply u ExtM M M M N N+A R

Divide U A R D% ... D+A D+R,D+R, D+A, D+R, A,
R

Square root U E (A+R)%% .. A R

Negate U S

Absolute value U S

FP compare U A R

Stages:

M First stage of multiplier _

N Second stage of multiplier A Mantissa ADD stage
. D Divide pipeline stage

R Rounding stage E E ton test st

S Operand shift stage xception test stage

U Unpack FP numbers

ﬂ CS 152 L15 Adv. Pipe. (10) Patterson Fall 2003 © UCB



R4000 Performance

 Not ideal CPI of 1:

— FP structural stalls: Not enough FP hardware (parallelism)
: RAW data hazard (latency)
— Branch stalls (2 cycles + unfilled slots)
(1 or 2 clock cycles)

4.5 T
4 1 [ ]
35 71
3 4
2.5
7 |
1.5
1 4
0.5
O ]
I s : 3 3 :
g ) 2
M Base B Load stalls M Branch stalls [ FP result stalls M Fp structural

stalls

(

CS 152 L15 Adv. Pipe. (11) Patterson Fall 2003 © UCB



Can we somehow make CPI closer to 17

« Let's assume full pipelining:

— If we have a 4-cycle instruction, then we need 3 instructions
between a producing instruction and its use:

multf  $FO0,$F2,5F4

delay-1

delay-2

delay-3 Earliest forwarding for
addf  $F6,5F10,$F0 4-cycle instructions

Earliest forwarding for
1-cycle instructions

Fetch ||Decode|| Ex1 Ex2 Ex3 Ex4 wWB

addf delay3 delay2 delayl multf

Q CS 152 L15 Adyv. Pipe. (12) Patterson Fall 2003 © UCB




FP Loop: Where are the Hazards?

Loop: LD FO,0(R1) ;FO=vector element
ADDD F4,F0,F2 ;add scalar from F2
SD O(R1),F4 ;store result
SUBTI R1,R1,8 ;decrement pointer 8B (DW)
BNEZ R1,Loop ;branch Rl!=zero

NOP ;delayed branch slot
Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3
FP ALV op Store double 2
Load double FP ALV op 1
Load double Store double o)

Integer op Integer op O

- Where are the stalls?

ﬂ CS 152 L15 Adv. Pipe. (13) Patterson Fall 2003 © UCB




FP Loop Showing Stalls

1 Loop: LD ,0(R1l) ;FO=vector element

2 stall

3 ADDD F4,F0,F2 ;add scalar in F2

4 stall

5 stall

6 SD O(Rl) ,F4 ;store result

7 SUBI R1,R1,8 ;decrement pointer 8B (DW)
8 BNEZ R1,Loop ;branch Rl!=zero

9 stall ;delayed branch slot
Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3

FP ALV op Store double 2

Load double FP ALV op 1

* 9 clocks (10 if SUBI/BNEZ is a stall): Rewrite

ﬂcode to minimize stalls?

CS 152 L15 Adv. Pipe. (14) Patterson Fall 2003 © UCB




Revised FP Loop Minimizing Stalls

1 Loop: LD ,0(R1)

2 stall

3 ADDD F4,F0,F2

4 SUBI R1,R1,8

5 BNEZ R1,Loop ;delayed branch

6 SD 8(R1l) ,F4 ;altered when move past SUBI

Swap BNEZ and SD by changing address of SD

Instruction Instruction Latency in
producing result using result clock cycles
FP ALU op Another FP ALU op 3

FP ALU op Store double 2

Load double FP ALV op 1

6 clocks: Unroll loop 4 times code to make faster?

ﬂ CS 152 L15 Adv. Pipe. (15) Patterson Fall 2003 © UCB




Unroll Loop Four Times (straightforward way)

1 Loop:LD
2 ADDD
3 SD
4 LD
5 ADDD
6 SD
7 LD
8 ADDD
9 SD
10 LD
11 ADDD
12 SD
13 SUBI
14 BNEZ
15 NOP

FO,0 (R1)
F4,F0,F2
0(R1) ,F4
F6,-8 (R1)
F8,F6,F2

-8 (R1) ,F8
F10,-16 (R1)
F12,F10,F2
-16 (R1) ,F12
F14,-24 (R1)
F16,Fl4,F2
-24 (R1) ,F16
R1,R1, #32
R1,LOOP

1 cycle stall
2 cycles stall

Rewrite loop

;drop SUBI & BNEZ {O MINIMIze

;ydrop SUBI & BNEZ

;drop SUBI & BNEZ

;alter to 4*8

stalls?

15 + 4 x (1+2) = 27 clock cycles, or 6.8 per iteration
(Assumes R1 is multiple of 4)
CPI = 27/15 = 1.8

(

CS 152 L15 Adv. Pipe. (16)

Patterson Fall 2003 © UCB



Unrolled Loop That Minimizes Stalls

1 Loop:LD FO,O0(R1)

2 1D F6,-8(R1)

3 1D F10,-16(R1l)
4 1D F1l4,-24 (R1)
5 ADDD F4,FO0,F2

6 ADDD F8,F6,F2

7 ADDD Fl12,F10,F2
8 ADDD Fl6,F14,F2
9 SD O(R1l) ,F4
10 SD -8 (R1) ,F8
11 SD -16 (R1) ,F12
12 SUBI R1,R1,#32
13 BNEZ R1l,LOOP

14 SD 8 (R1) ,F16

 What assumptions made
when moved code?

— OK to move store past
SUBI even though SUBI
changes register value

— OK to move loads before
stores: get right data?

— When is it safe for
compiler to do such
changes?

; 8-32 = -24

14 clock cycles, or 3.5 per iteration

CPI = 14/14 =1

(

CS 152 L15 Adv. Pipe. (17)

When safe to move instructions?

Patterson Fall 2003 © UCB



Administrivia
Lab 5/6 Design Doc Due Sunday by 9 PM

— Meet tomorrow with TA to go over plan Monday
Mon 10/20: HW 3 due

Design full cache, but only demo reads on
Friday 10/24; demo writes on Friday 10/31

Thurs 11/6: Design Doc for Final Project due
— Deep pipeline? Superscalar? Out-of-order?

Friday 11/14: Demo Project modules
Monday 12/1: Demo Project to T.A.s

Tuesday 12/2: 30 min oral presentation
\/s\/.sg1qm$e$gay 12/3 Processor raCIng Patterson Fall 2003 © UCB



Getting CPI < 1: Issuing Multiple Instructions/Cycle

« Two main variations: Superscalar and VLIW

e Superscalar: varying no. instructions/cycle (1 to 6)
— Parallelism and dependencies determined/resolved by HW
— Intel Pentium IV, IBM PowerPC G5, Sun UltraSparc,...

— Very Long Instruction Words (VLIW): fixed number of instructions
(16) parallelism determined by compiler

— Pipeline is exposed; compiler must schedule delays to get right
result
« Explicit Parallel Instruction Computer (EPIC)/ Intel Titanium
— 128 bit packets containing 3 instructions (can execute sequentially)
— Can link 128 bit packets together to allow more parallelism

— Compiler determines parallelism,
HW checks dependencies and fowards/stalls

ﬂ CS 152 L15 Adv. Pipe. (19) Patterson Fall 2003 © UCB




Getting CPI < 1: Issuing Multiple Instructions/Cycle

« Simple Superscalar MIPS: 2 instructions, 1 FP & 1 anything
— Fetch 64-bits/clock cycle; Int on left, FP on right
— Can only issue 2nd instruction if 1st instruction issues
— More ports for FP registers to do FP load & FP op in a pair

Type Pipe Stages

Int. instruction |F ID EX MEM WB

FP instruction |F ID EX MEM WB

Int. instruction |F ID EX MEM WB

FP instruction |F ID EX MEM WB

Int. instruction |F ID EX MEM WB
FP instruction |F ID EX MEM WB

* 1 cycle load delay expands to 3 instructions in SS
— instruction in right half can’t use it, nor instructions in next slot

Q CS 152 L15 Adv. Pipe. (20) Patterson Fall 2003 © UCB




Loop Unrolling in Superscalar

Integer instruction

Loop: LD
LD
LD
LD
LD
SD
SD
SD
SD

SUBI

F6,-8(R1)
F10,-16(R1)
F14,-24(R1)
F18,-32(R1

-8(R1),F8

-16(R1),F12

-24(R1),F16
R1,R1,#40

BNEZ R1,LOOP

SD

-32(R1),F20

FP instruction

ADDD F8,F6,F2

ADDD F12,F10,F2
ADDD F16,F14,F2
ADDD F20,F18,F2

Clock cycle

© 0O N O 00 A ODN -

= A
N =~ O

* Unrolled 5 times to avoid delays (+1 due to SS)

CS 152 L15 Adv. Pipe. (21)

12 clocks, or 2.4 clocks per iteration

Patterson Fall 2003 © UCB



Superscalar evolution

» 2 instructions (“2-scalar’):
1 FP + 1 everything

— MIPS: 64-bit aligned in memory/cache

» 2 instructions: 1 anything + 1 anything
but load/store (only 1 load/store per pair)
— No alignment restrictions

* 3 - 4 instructions ("3 or 4-scalar’):
1 load/store + 3 anything else

* 3 - 6 instructions from a window of read
to execute instructions: up to 2
ﬂ load/store + rest anything else

CS 152 L15 Adv. Pipe. (22) Patterson Fall 2003 © UCB




Problems?

 How do we prevent WAR and WAW hazards?

 How do we deal with variable latency?
— Forwarding for RAW hazards harder.

D F634RD) | IF ID EX MEM WB

D FRARY) | IF ID EX MEMWB RAW
MLTD FOF2,F4 IF ID stdl M M2 M3 M N6 N6 MV MB NO MIQNVEM WB
SBD FBF6F2 IF ID Al A2 MEM W8 O&
DIVD  FIOFOF6 IF ID stdl stal stdl stal stal Wl D2
ADDD _F6FBF2 IFID Al A2 NEMWR WAR

ﬂ CS 152 L15 Adv. Pipe. (23) Patterson Fall 2003 © UCB



What about FETCH? Independent “Fetch” unit

Stream of Instructions

To Execute
Instruction Fetch Out-Of-Order
with Execution
Branch Prediction Unit

g > 4

Correctness Feedback
On Branch Results

* |nstruction fetch decoupled from execution
« Often issue logic (+ rename) included with Fetch

(

CS 152 L15 Adv. Pipe. (24) Patterson Fall 2003 © UCB



Branches must be resolved quickly for loop overlap!

* In loop-unrolling example, we assumed branches were
under control of “fast” integer unit in order to get overlap!

Loop: LD FO
MULTDF4 FO
SD F4
SUBT R1
BNEZ R1

0 R1
F2

0 R1
R1 # 8
Loop

« What happens if branch depends on result of multd??
— We completely lose all of our advantages!
— Need to be able to “predict” branch outcome.

— If we were to predict that branch was taken, this
would be right most of the time.

Z Problem much worse for superscalar machines!
CS 152 L15 Adv. Pipe. (25)

Patterson Fall 2003 © UCB



Prediction: Branches, Dependencies, Data

* Prediction has become essential to getting good
performance from scalar instruction streams.

* We will discuss predicting branches. However, architects
are now predicting everything:
data dependencies, actual data, and results of groups of
instructions:

— At what point does computation become a probabilistic operation
+ verification?
— We are pretty close with control hazards already...
 Why does prediction work?
— Underlying algorithm has regularities.

— Data that is being operated on has regularities.

— Instruction sequence has redundancies that are artifacts of way
that humans/compilers think about problems.

Qrediction — Compressible information streams?
c

S 152 L15 Adv. Pipe. (26) Patterson Fall 2003 © UCB



Dynamic Branch Prediction

* Prediction could be “Static” (at compile time) or
“Dynamic” (at runtime)

— For our example, if we were to statically
predict “taken”, we would only be wrong once
each pass through loop

 Is dynamic branch prediction better than static branch
prediction?

— Seems to be. Still some debate to this effect

— Today, lots of hardware being devoted to
dynamic branch predictors.

* Does branch prediction make sense for 5-stage, in-order
pipeline? What about 8-stage pipeline?
Q Perhaps: eliminate branch delay slots/then predict branches
c

S 152 L15 Adv. Pipe. (27) Patterson Fall 2003 © UCB



Simple dynamic prediction: Branch Target Buffer (BTB)

« Address of branch index to get prediction AND branch address (if taken)
— Must check for branch match now, since can’t use wrong branch address
— Grab predicted PC from table since may take several cycles to compute

Branch PC Predicted PC

J

HO134
UoI4ONJ4SUl JO Od
Y

N

I

> Predict taken or untaken

« Update predicted PC when branch is actually resolved
« Return instruction addresses predicted with stack

Q CS 152 L15 Adv. Pipe. (28) Patterson Fall 2003 © UCB



Branch History Table (BHT

Branch PC

 BHT is a table of “Predictors”

— Could be 1-bit, could be complete state machine

— Indexed by PC address of Branch — without tags
* In Fetch state of branch:

— BTB identifies branch

— Predictor from BHT used to make prediction
 When branch completes

— Update corresponding Predictor

CS 152 L15 Adv. Pipe. (29) Patterson Fall 2003 © UCB

(



Dynamic Branch Prediction: Usual Division

« Branch Target Buffer (BTB): identify branches and hold taken
addresses
— Trick: identify branch before fetching instruction!

« Branch History Table(BHT)

— Table makes prediction by keeping long-term history
« Example: Simple 1-bit BHT: keep last direction of branch

— No address check: Can be good, can be bad....

* Problem: in a loop, 1-bit BHT will cause two mispredictions
(avg. is 9 iterations before exit):
— End of loop case, when it exits instead of looping as before

— First time through loop on next time through code, when it predicts exit
instead of looping

Performance = f(accuracy, cost of misprediction)
— Misprediction = Flush Reorder Buffer

ﬂ CS 152 L15 Adv. Pipe. (30) Patterson Fall 2003 © UCB




Dynamic Branch Prediction: 2-bit predictor

* Solution: 2-bit scheme where change prediction

only if get misprediction twice:
T

NT
Predict Taken Q Predict Taken
T
T
T
NT
T

Predict Not - Predict Not

Taken Taken
* Red: stop, not taken

« Green: go, taken
* Adds hysteresis to decision making process

ﬂ CS 152 L15 Adv. Pipe. (31) Patterson Fall 2003 © UCB

NT




BHT Accuracy

* Mispredict because either:
— Wrong guess for that branch
— Got branch history of wrong branch when
iIndex the table

* 4096 entry table programs vary from
1% misprediction (nasa7, tomcatv) to
18% (eqntott), with spice at 9% and gcc
at 12%

* 4096 about as good as infinite table
(in Alpha 21164)

ﬂ CS 152 L15 Adv. Pipe. (32) Patterson Fall 2003 © UCB




Correlating Branches

« Hypothesis: recent branches are correlated; that is, behavior of recently
executed branches affects prediction of current branch
* Two possibilities; Current branch depends on:

— Last m most recently executed branches anywhere in program
Produces a “GA” (for “global address”) in the Yeh and Patt classification (e.g.
GAQ)

— Last m most recent outcomes of same branch.
Produces a “PA” (for “per address”) in same classification (e.g. PAQ)

» Idea: record m most recently executed branches as taken or not taken,
and use that pattern to select the proper branch history table entry

— A single history table shared by all branches (appends a “g” at end), indexed
by history value.

— Address is used along with history to select table entry (appends a “p” at end
of classification)

— If only portion of address used, often appends an “s” to indicate “set-indexed”
tables (l.e. GAs)

ﬂ CS 152 L15 Adv. Pipe. (33) Patterson Fall 2003 © UCB




Correlating Branches

* Forinstance, consider global history, set-indexed BHT.
That gives us a GAs history table.

(2,2) GAs predictor

First 2 means that we keep two
bits of history

Second means that we have 2
bit counters in each slot.

Then behavior of recent
branches selects between, say,
four predictions of next branch,
updating just that prediction

Note that the original two-bit
counter solution would be a (0,2)
GAs predictor

Note also that aliasing is
possible here...

CS 152 L15 Adv. Pipe. (34)

Branch address

2-bits per branch predictors

[- I BN Prediction

Each slot is
2-bit counter

2-bit global branch history register

Patterson Fall 2003 © UCB



Accuracy of Different Schemes

18%

189% 4096 Entries 2-bit BHT
Unlimited Entries 2-bit BHT
1024 Entries (2,2) BHT

14% T

12% T

10% T

8% T

6% T

4% —+

2% T

0% A

0%

ﬂ CS 152 L15 Adv. Pipe. (35) Patterson Fall 2003 © UCB

Frequency of Mispredictions

nasa’?
matrix300

tomcatv
doducd

spice

fpppp
gce

espresso
eqntott
li




Peer : Superpipelined (SP) v. Supersclar (SS)

 Which are true? Assume the same
technology and design effort

A. SP likely has a higher clock rate than SS
B. SP likely has a higher CPI than SS

C. A 10-stage SP has the same peak
instruction fetch bandwidth as a 5-stage SS

1.ABC:
2.ABC:
3.ABC:
4.ABC:

ﬂ CS 152 L15 Adv. Pipe. (36)

"FF 5. ABC: TFF
"FT 6. ABC: TFT
=TF 7. ABC: TTF

-TT 8. ABC: TTT

Patterson Fall 2003 © UCB



Peer: Superpipelined (SP) v. Supersclar (SS)

 Assume a 10-stage SP vs. as a 5-stage SS

A. You would expect the latency of the SP
instruction cache to be half that of SS

B. The branch delay for SP is (likely) longer than
the 1-instruction branch delay of SS

C. Although SP has a faster clock rate, SS is
likely faster since it has fewerflgipeline hazards

1.ABC:
2.ABC:
3.ABC:
4 .ABC:

ﬂ CS 152 L15 Adv. Pipe. (37)

-FF 5. ABC:
-FT 6. ABC: TFT

F

'F 7. ABC: TTF

T 8. ABC: TTT

Patterson Fall 2003 © UCB



Peer: SP, SS, and Branch Prediction

 Assume a 10-stage SP vs. as a 5-stage SS
A. Branch prediction more important for SP v. SS
B. 2-bit branch predictor is useful for beq, bne

C . 2-bit branch predictor is useful for jr

1.ABC: FFF 5. ABC: TFF
2.ABC: FFT 6. ABC: TFT
3.ABC: FTF 7. ABC: TTF
4 ABC: FTT 8. ABC: TTT

ﬂ CS 152 L15 Adv. Pipe. (38) Patterson Fall 2003 © UCB




Low CPI vs. Limits of Superscalar

* While Integer/FP split is simple for the HW, get
CPI of 0.5 only for programs with:

— Exactly 50% FP operations
— No hazards

* |f more instructions issue at same time, harder to
decode and issue

— Even 2-scalar => compare 2 opcodes, 6 register
specifiers, & decide if 1 or 2 instructions can issue

ﬂ CS 152 L15 Adv. Pipe. (39)

Patterson Fall 2003 © UCB



VLIW: Very Long Instruction Word

Tradeoff instruction space for simple decoding

The long instruction word has room for many
operations

By definition, all the operations the compiler puts in
the long instruction word can execute in parallel

* E.g., 2 integer operations, 2 FP ops, 2 Memory refs,
1 branch

— 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168
bits wide

* Need compiling technique that schedules across
several branches to have enough instructions

ﬂ CS 152 L15 Adv. Pipe. (40) Patterson Fall 2003 © UCB




Superscalar v. VLIW

 Smaller code size -+« Simplified Hardware

+ Binary for decoding, issuing
compatibility instructions
across generations * No Interlock Hardware
of hardware (compiler checks?)

* More registers, but
simplified Hardware
for Register Ports
(multiple independent
register files?)

ﬂ CS 152 L15 Adyv. Pipe. (41) Patterson Fall 2003 © UCB




Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2  operation 1 op. 2 branch
LD LD F6,-8(R1)

LD F10,-16(R1)
LD F18,-32(R1) LD F22,-40(R1) ADDI{F4)
LD F26,-48(R1)

1
2
FO)F2  ADDD F8,F6,F2 3
ADDD F12, F10, F2 ADDD F16,F14,F2 4
ADDD F20, F18, F2 ADDD F24,F22,F2 5
SDO(R1[(F4) SD-8(R1),F8 ADDD F28, F26, F2 6
SD -16(R1),F12 SD -24(R1),F16 7
SD -32(R1),F20 SD -40(R1),F24 SUBI R1,R1,#48 8
SD -0(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration

Need more registers in VLIW(EPIC => 128int + 128FP)

ﬂ CS 152 L15 Adv. Pipe. (42) Patterson Fall 2003 © UCB




Problems with First Generation VLIW

 |ncrease in code size

— generating enough operations in a straight-line code fragment
requires ambitiously unrolling loops

— whenever VLIW instructions are not full, unused functional units
translate to wasted bits in instruction encoding
* Operated in lock-step; no hazard detection HW

— a stall in any functional unit pipeline caused entire processor to
stall, since all functional units must be kept synchronized

— Compiler might prediction function units, but caches hard to predict
* Binary code compatibility

— Pure VLIW => different numbers of functional units and unit
latencies require different versions of the code

ﬂ CS 152 L15 Adv. Pipe. (43) Patterson Fall 2003 © UCB



Intel/HP |A-64 “Explicitly Parallel
Instruction Computer (EPIC)”

* |A-64: instruction set architecture; EPIC is type
— EPIC = 2nd generation VLIW
* ltanium™ is name of first implementation (2001)
— Highly parallel and deeply pipelined hardware at 800Mhz
— 6-wide, 10-stage pipeline at 800Mhz on 0.18 u process
« 128 64-bit integer registers + 128 82-bit floating point

registers
— Not separate register files per functional unit as in old VLIW

« Hardware checks dependencies
(interlocks => binary compatibility over time)

* Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

(

CS 152 L15 Adv. Pipe. (44) Patterson Fall 2003 © UCB



Intel/HP |A-64 “Explicitly Parallel
Instruction Computer (EPIC)”

* Instruction group: a sequence of consecutive instructions

with no register data dependences
— All the instructions in a group could be executed in parallel, if
sufficient hardware resources existed and if any dependences
through memory were preserved

— An instruction group can be arbitrarily long, but the compiler must
explicitly indicate the boundary between one instruction group and
another by placing a stop between 2 instructions that belong to

different groups
 |A-64 instructions are encoded in bundles, which are 128

bits wide.
— Each bundle consists of a 5-bit template field and 3 instructions, each
41 bits in length
« 3 Instructions in 128 bit “groups”; field determines if instructions
dependent or independent

— Smaller code size than old VLIW, larger than x86/RISC
ﬂ — Groups can be linked to show independence > 3 instr

CS 152 L15 Adv. Pipe. (45) Patterson Fall 2003 © UCB



5 Types of Execution in Bundle

Execution Instruction Instruction Example
Unit Slot  type Description Instructions
l-unit A Integer ALU add, subtract, and, or, cmp
I Non-ALU Int shifts, bit tests, moves
M-unit A Integer ALU add, subtract, and, or, cmp
M Memory access Loads, stores for int/FP regs
F-unit F Floating point  Floating point instructions
B-unit B Branches Conditional branches, calls
L+X L+X Extended Extended immediates, stops

+ 5-bit template field within each bundle describes

both the presence of any stops associated with the
bundle and the execution unit type required by each
instruction within the bundle

CS 152 L15 Adv. Pipe. (46) Patterson Fall 2003 © UCB



|A-64 Registers

* The integer registers are configured to help accelerate
procedure calls using a register stack

— mechanism similar to that developed in the Berkeley RISC-|
processor and used in the SPARC architecture.

— Registers 0-31 are always accessible and addressed as 0-31

— Registers 32-128 are used as a register stack and each procedure
is allocated a set of registers (from 0 to 96)

— The new register stack frame is created for a called procedure by
renaming the registers in hardware;

— a special register called the current frame pointer (CFM) points to
the set of registers to be used by a given procedure

« 8 64-bit Branch registers used to hold branch destination
addresses for indirect branches

* 64 1-bit predict registers

ﬂ CS 152 L15 Adyv. Pipe. (47) Patterson Fall 2003 © UCB




ltanium™ Processor Silicon
(Copyright: Intel at Hotchips °00)

NS S m m
Core Processor Die 4 x 1MB L3 cache

ﬂ CS 152 L15 Adv. Pipe. (48) Patterson Fall 2003 © UCB




ltanium™ Machine Characteristics
(Copyright: Intel at Hotchips °00)

Frequency

800 MHz

Transistor Count

25.4M CPU; 295M L3

Process 0.18u CMOS, 6 metal layer

Package Organic Land Grid Array

Machine Width 6 insts/clock (4 ALU/MM, 2 Ld/St, 2 FP, 3 Br)
Registers 14 ported 128 GR & 128 FR; 64 Predicates
Speculation 32 entry ALAT, Exception Deferral

Branch Prediction

Multilevel 4-stage Prediction Hierarchy

FP Compute Bandwidth

3.2 GFlops (DP/EP); 6.4 GFlops (SP)

Memory -> FP Bandwidth

4 DP (8 SP) operands/clock

Virtual Memory Support

64 entry ITLB, 32/96 2-level DTLB, VHPT

L2/L1 Cache

Dual ported 96K Unified & 16KD; 16Kl

L2/L1 Latency

6 / 2 clocks

L3 Cache

4MB, 4-way s.a., BW of 12.8 GB/sec;

System Bus

2.1 GB/sec; 4-way Glueless MP
Scalable to large (512+ proc) systems

Q CS 152 L15 Adv. Pipe. (49)

Patterson Fall 2003 © UCB




Itanium™ EPIC Design Maximizes SW-HW Synergy
(Copyright. Intel at Hoitchips 00)

Architecture Features programmed by compiler

|
|
|
. |
Branch Explicit gt?agc’zter Predication Data & Control Memory :
Hints Parallelism & Rotation Speculation Hints :
e z
I |
I |
I |
I |
I |
: g 4 Integer + :
! n D 4 MMX Units !
| L, |8, [128GR& |G !
| |Instruction|_ . | | 5 | 128 FR, ::: o :: 2FMACs || Three !
''| Cache |-—» |35 | > |Register| | & 7| (4forSSE) | llevels of |
i | &Branch ([T |2 | ” | Remap |4> & | » -icache: |,
' I Predictors | T | & :: & r -‘3 1< REIERT: L3 :
! —> B Stack 4> 2 - | 2 L.D/IST units | - , Le, :
; 2 Engine 3
! 5 2 8| [32entry ALAT |
. 0 |
|

ro
! ﬂ/ Speculation Deferral Management
CS 152 L15 Adv. Pipe. (50)

Patterson Fall 2003 © UCB



10 Stage In-Order Core Pipeline
(Copyright: Intel at Hotchips "00)

WORD-LINE
RENAME DECODE REGISTER R

EXE/DET/WRB

TE EXCEPTION WRITE-BACK
TECT

INST POINTER FETCH
GENERATION

InStuchion belivery
»Dispersal of up to ©
instructions on 9 ports
*Reg. remapping
*Reg. stack engine

CS 152 L15 Adyv. Pipe. (51) Patterson Fall 2003 © UCB



Itanium processor 10-stage pipeline

* Front-end (stages IPG, Fetch, and Rotate):
prefetches up to 32 bytes per clock (2
bundles) into a prefetch buffer, which can
hold up to 8 bundles (24 instructions)

— Branch prediction is done using a multilevel
adaptive predictor like P6 microarchitecture

* Instruction delivery (stages EXP and REN):
distributes up to 6 instructions to the 9
functional units

— Implements registers renaming for both rotation
and register stacking.

ﬂ CS 152 L15 Adv. Pipe. (52) Patterson Fall 2003 © UCB




Itanium processor 10-stage pipeline

« QOperand delivery (WLD and REG): accesses
register file, performs register bypassing, accesses
and updates a register scoreboard, and checks
predicate dependences.

— Scoreboard used to detect when individual instructions
can proceed, so that a stall of 1 instruction in a bundle
need not cause the entire bundle to stall

« Execution (EXE, DET, and WRB): executes
instructions through ALUs and load/store units,
detects exceptions and posts NaTs, retires
iInstructions and performs write-back

— Deferred exception handling for speculative instructions is
supported by providing the equivalent of poison bits,
called NaTs for Not a Thing, for the GPRs (which makes
the GPRs effectively 65 bits wide), and NaT Val (Not a
Thing Value) for FPRs (already 82 bits wides)

CS 152 L15 Adv. Pipe. (53) Patterson Fall 2003 © UCB

(



Comments on ltanium

* Remarkably, the Itanium has many of the
features more commonly associated with the
dynamically-scheduled pipelines

— strong emphasis on branch prediction, register
renaming, scoreboarding, a deep pipeline with
many stages before execution (to handle
instruction alignment, renaming, etc.), and
several stages following execution to handle
exception detection

« Surprising that an approach whose goal is to
rely on compiler technology and simpler HW

seems to be at least as complex as
dynamically scheduled processors!

(

CS 152 L15 Adv. Pipe. (54) Patterson Fall 2003 © UCB



Cost (Microprocessor Report, 8/25/03)

sSun

: AMD HP [[:1,0)
A Athlon XP | PA-8700 | Powerd+
Clock Rate 1.1580Hz 2.170Hz a8/0MHz 1.450Hz
Cache B/ G/ Gak fad i/ FROKS Bak/ 32K
(I/DfL2/LZ) 1.75M 512K 1.5M 1.5ME
Issue Rate 4 issue 3 86 instr 4 issue 8 Issue
Pipeline Stages | 7/9 stages | 9/11 stages  7/0 stages | 12/17 stages
Owt of Order B0 instr FIROPs A6 instr 200 instr
Rename Regs 45/41 36/36 56 total 45/40
BHT Entries 4k x 9-hit 4K x 2-hit | 2K x Z-bit |3 x 16K x 1-bit
TLBE Entries 128,128 280/288 240 unified| 1,024 unified
Memory B/W 12GB/s 2. 7GEBf 1.5406/5 12.8GE/s
Package FC-LGOA-1443| PGA-462 LOA-544 FACAA
IC Process 0 1Bxm M | 0.13xm 6M 0.18xm /M 0 130m Ami
Die Size 397mm? 101mm® | 30dmm? 267mm*"
Transistors 135 million | 54.3 million 130 million| 124 million**
Est Die Cost %180 ot Lo 19a* §144%+
Power (Max) 11000 TEWIMTE) TaW BaW =+
Availability 1003 1003 3002 4002

Intel Intel Intel MIPS
Itanium 2 XeonMP Xeon R14000
1.0Hz 2 00Hz 3.060Hz a0 Hz
16K TakS 12KSEKS 12K/ 8K
256K/3M 512K/2M 512K 32K/32K
B Issue 3 ROPs 3 ROPs 4 issue
B stages 2234 stages 232/24 stagesl 6 stages
Mone 126 ROPs | 126 ROPs 48 instr
328 total 128 total 128 total 32/32
512 x 2-bit 4k % 2-hit 4K x 2-hit 2K w 2-hit
HL;E'E EL:;' D/l 12817640 | 1281/64D | 64 unified
G ACES s 3 20GESs 4 3GE/fs 1606/
mPoA-F00 mPGA-603 POA-423 JFCBGA-1153
01Bxm oM | 013xm a6 0.13xzm 60Mg 0. 15xm 7
418mm** 211 mm? 131mm* 142mm*
221 million | 160 million® %5 million | 7.2 million
1166* $edn b ol 68"
1300 65W(Max) | 82WI(TDF) 16w
3002 1003 4002 2002

o 3X die size Pentium 4, 1

CS 152 L15 Adv. Pipe. (55)

Ultra-1ll
1.050Hz

IZE/BAK

4 issue
1415 stages
Mone
Mone
16K x 2-bit

128175120

4 BOB/s
FC-LGA 1368
0. 15xm 7
210mm?
29 million
172"
FaW =
1002

/3 clock rate Pentium 4
« Cache size (KB): 16+16+256+3076 v. 12+8+512

Patterson Fall 2003 © UCB



Performance (Microprocessor Report, 8/25/03)

e —

e Alpha AMD HP IBM Intel Intel Intel MIPS Sun

21364 Athlon XF | PA-B700 @ Fowerd+  ltanium 2 xeonMP Xeon R14000 UltraSPARC NI
System or HP9000 | pSeries HP Dell | ¢ 3900 Sun
Motherboard G51280/7 | A7NSBX C3750 650 6M2  RX2600 6650 Prec. 350 Blade 2050
Clock Rate 870MHz _ 1.45GHz _ 1.0GHz 3.06GHz _600MHz 1.05GHz
External Cache | MNome | None | None 16MB Mone |  Mone |  None 8MB SMB
164.gzip 583 1,026 588 673 583 758 1,138 322 433
175.vpr 822 653 688 902 704 625 606 572 460
176.gcc 859 755 906 914 1,014 1,100 1,236 445 577
181.mcf 712 420 494 1,391 834 BGG 773 783 659
186.crafty G82 1,292 751 884 781 712 1,179 502 558
197 parser 514 905 495 381 660 778 1,025 409 488
252.eo0n 958 1,483 502 1,150 1,004 Q20 1,387 507 527
253.perlbmk ol 1,306 L F2 815 a52 1,381 36/ 544
254.gap 636 1,059 339 936 &20 F22 1,417 308 372
255 vortex 1,094 1,608 1,156 1,428 1,123 1,118 1,658 679 /38
256.bzip2 8524 840 534 065 755 712 856 453 629
300.twolf 1,018 887 911 1,198 880 1,009 900 545 570
SPECint_base2000 o5 S50 &2 537
168.wupside 883 1,131 446 1,532 1,003 816 1,406 434 659
171.swim 3,590 1,006 931 1,417 3,205 848 1,837 529 980
172.mgrid 708 799 621 850 1,720 449 1,047 379 487
173.applu 1,518 654 702 479 2,033 496 1,168 381 310
177.mesa 928 1,103 694 737 642 814 1,165 425 543
178.galgel 2,105 738 1,603 3,186 2,505 1,200 1,536 1,398 1,713
179.art 2,014 495 670 1,864 4,226 1,147 716 1,436 9,389
183.equake 519 730 413 2,008 1,871 449 1,201 347 645
187 facerec 1,105 1,008 430 515 1,152 762 1,315 647 954
188.ammp 735 587 553 923 788 729 644 573 5019
189.lucas 1,622 853 448 1,306 1,206 682 1,522 442 371
191.fma3d 1,015 850 404 298 47 551 1,089 306 4K
200.sixtrack 45659 H3d 471 B21 Ho4 376 Hie4d 258 366

301.aspi 1,244 f05 696 566 678 695 833 40a 471
SPECfp_base2000 1,124 776 - -y

S

CS 152 L15 Adyv. Pipe. (56) Patterson Fall 2003 © UCB



Peformance of |A-64 ltanium?

* Whether this approach will result in
significantly higher performance than
other recent processors is unclear

* The clock rate of Itanium (733 MHz)
and Itanium Il (1.0 GHz) is
competitive but slower than the clock
rates of several dynamically-
scheduled machines, which are
already available, including the Intel
Pentium 4 and AMD Operteron

ﬂ CS 152 L15 Adv. Pipe. (57) Patterson Fall 2003 © UCB




Summary

* Loop unrolling = Multiple iterations of loop in SW:
— Amortizes loop overhead over several iterations
— Gives more opportunity for scheduling around stalls

* Very Long Instruction Word machines (VLIW)
= Multiple operations coded in single, long instruction

— Requires sophisticated compiler to decide which
operations can be done in parallel

— Trace scheduling = find common path and
schedule code as if branches didn’t exist (+ add
“fixup code”)

* Both require additional registers

ﬂ CS 152 L15 Adv. Pipe. (58) Patterson Fall 2003 © UCB




