
UNIVERSITY OF CALIFORNIA
Department of Electrical Engineering

and Computer Sciences
Computer Science Division

CS61A P. N. Hilfinger

Highlights of GNU Emacs

This document describes the major features of GNU Emacs (called “Emacs” hereafter), a
customizable, self-documenting text editor. In the interests of truth, beauty, and justice—and
to undo, in some small part, the damage Berkeley has done by foisting vi on an already-
unhappy world—Emacs will be the official CS61A text editor this semester.

Emacs carries with it on-line documentation of most of its commands, along with a tutorial
for first-time users (see §7). Because this documentation is available, I have not attempted
to present a complete Emacs reference manual here.

To run Emacs, simply enter the command emacs to the shell. Within Emacs, as described
below, you can edit any number of files simultaneously, run UNIX shells, read and send mail,
and run the Scheme interpreter to execute your programs. As a result, it should seldom be
necessary to leave Emacs before you are ready to logout and seldom necessary to create new
windows.

1 Basic Concepts

We’ll begin with some fundamental definitions and notational conventions.

1.1 Buffers, windows, and what’s in them

At any given time, Emacs maintains one or more buffers containing text. Each buffer may,
but need not, be associated with a file. A buffer may be associated with a UNIX process, in
which case the buffer generally contains input and output produced by that process (see, for
example, sections 8 and 10). Within each buffer, there is a position called the point, where
most of the action takes place.

Emacs displays one or more windows into its buffers, each showing some portion of the text
of some buffer. A buffer’s text is retained even when no window displays it; it can be displayed
at any time by giving it a window. Each window has its own point (as just described); when
only one window displays a buffer, its point is the same as the buffer’s point. Two windows
can simultaneously display text (not necessarily the same text) from the same buffer with

1



2 P. N. Hilfinger

a different point in each window, although it is most often useful to use multiple windows
to display multiple files. At the bottom of each window, Emacs displays a mode line, which
generally identifies the buffer being displayed and (if applicable) the file associated with it.
At any given time, the cursor, which generally marks the point of text insertion, is in one of
the windows (called the current window) at that window’s point.

1.2 Commands

At the bottom of Emacs’ display is a single echo area, displaying the contents of the minibuffer.
This is a one-line buffer in which one types commands. It is, for many purposes, an ordinary
Emacs buffer; standard Emacs text-editing commands for moving left or right and for inserting
or deleting characters generally work in it. To issue a command by name, one types M-x

(“meta-x”; this notation is described below) followed by the name of the command and RET

(the return key); the echo area displays the command as it is typed. It is only necessary
to type as much of the command name as suffices to identify it uniquely. For example, to
run the command for looking at a UNIX manual entry—for which the full command is M-x

manual-entry—it suffices to type M-x man, followed by a RET.

All Emacs commands have names, and you can issue them with M-x. You’ll invoke most
commands, however, by using control characters and escape sequences to which these com-
mands are bound. Almost every character typed to Emacs actually executes a command. By
default, typing any of the printable characters executes a command that inserts that character
at the cursor. Many of the control characters are bound to commonly-used commands (see
the quick-reference guide at the end for a summary of particularly important ones). At any
time, it is possible to bind an arbitrary key or sequence of keys to an arbitrary command,
thus customizing Emacs to your own tastes. Hence, all descriptions of key bindings in this
document are actually descriptions of standard or default bindings.

1.3 Notations for special keys

In referring to non-graphic keys (control characters and the like), we’ll use the following
notations.

ESC denotes the escape character.

DEL denotes the delete character. On HP workstations, as we’ve set them up for this class,
the ‘Backspace’ key has the same effect.

SPC denotes the space character.

RET denotes the result of pressing the ‘Return’ key. (Confusingly, the result of typing this into
a file is not a return character (ASCII code 13), but rather a linefeed character (ASCII
code 10). Nevertheless, Emacs distinguishes the two keys.) On the HP workstations,
this is the wide key labelled “Enter” in the main section of the keyboard.



Highlights of GNU Emacs 3

LFD denotes the result of typing the linefeed key. On the HP workstations, this is the tall
key labelled “Enter” in the numeric keypad at the far right of the keyboard.

TAB denotes the tab (also C-i) key.

C-α denotes “control-α”—the result of holding down the Control (or Ctrl) key while typing
α.

M-α denotes “meta-α,” which one gets either by typing the two-character sequence ESC fol-
lowed by α, or (on our HP workstations when running the X window system) holding
down either Alt key while typing α.

C-M-α denotes the result of typing the two-character sequence ESC C-α, or (on HP worksta-
tions when running X) holding down both Control and Alt simultaneously with typing
α).

1.4 Command arguments

Certain commands take arguments, and take these arguments from a variety of sources. Any
command may be given a numeric argument. To enter the number comprising the digits
d0d1 · · · dn as a numeric argument (d0 may also be a minus sign), type either ‘M-d0d1 · · · dn’ or
‘C-ud0d1 · · · dn’ before the command. When using C-u, the digits may be omitted, in which
case ‘4’ is assumed. The most common use for numeric arguments is as repetition counts.
Thus, M-4 C-n moves down four lines and M-72 * inserts a line of 72 asterisks in the file.
Other commands give other interpretations, as described below. In describing commands, we
will use the notation ARG to refer to the value of the numeric argument, if present.

When commands prompt for arguments, Emacs will often allow provide a completion
facility. When entering a file name on the echo line, you can usually save time by typing TAB,
which fills in as much of the file name as possible, or SPC which fills in as much as possible
up to a punctuation mark in the file name. Here, “as much as possible” means as much as
is possible without having to guess which of several possible names you must have meant. A
similar facility will attempt to complete the names of functions or buffers that are prompted
for in the echo line.

1.5 Modes

The binding of keys to commands depends on the buffer that currently contains the cursor.
This allows different buffers to respond to characters in different ways. In this document, we
will refer to the set of key bindings in effect within a given buffer as the (major) mode of that
buffer (the term “mode” is actually somewhat ill-defined in Emacs). A set of key bindings
that simply modifies a few characteristics is called a minor mode.

Emacs will automatically establish a mode for buffers containing certain files depending
on the name of their associated file. Thus, buffers start out in ‘C’ mode for files whose names
end in ‘.c’ or ‘.h’; ‘C++’ mode for .cc or .C; or ‘Scheme’ mode (see §9) for .scm. These
modes affect the behavior of the TAB key, for example, causing program text to be indented



4 P. N. Hilfinger

according to the conventions for a particular programming language. The shell buffer runs in
Shell mode, which (among many other things) causes the RET key to send the last line typed
to the shell. Files with unclassifiable names generally start in Fundamental mode.

There is one useful minor mode that’s worth knowing about.

M-x auto-fill-mode toggles (reverses the setting) of auto-fill mode, which by default is
usually off. In auto-fill mode, lines get broken automatically as they are being typed
when they get too long. When you are typing comments in C programs, auto-fill mode
will automatically start a new comment on the next line when the current line gets near
to filling up.

2 Important special-purpose commands

C-g quits the current command. Generally useful for cancelling a M-x-style command or other
multi-character command that you have started entering. When in doubt, use it.

C-x C-c exits from Emacs. It prompts (in the echo area) if there are any buffers that have
not been properly saved.

C-x u undoes the effects of the last editing command. If repeated, it undoes each of the
preceding commands in reverse order (there is a limit). This is an extremely important
command; be sure to master it. This does not undo other kinds of commands; the
cursor may end up at some rather odd places.

C-l redraws the screen, and positions the current line to the center of the current window.

3 Basic Editing

The simple commands in this section will enable you to do most of the text entering and
editing that you’ll ordinarily need. Periodic browsing through the on-line documentation (see
section 7.3) will uncover many more.

3.1 Simple text.

To enter text, simply position the cursor to the desired buffer and character position (using
the commands to be described) and type the desired text. Carriage return behaves as you
would expect. To enter control characters and other special characters as if they were ordinary
characters, precede them with a C-q.

3.2 Navigation within a buffer.

The following commands move the cursor within a given buffer. Later sections describe how
to move around between buffers.

C-f moves forward one character (at the end of a line, this goes to the next).



Highlights of GNU Emacs 5

C-b moves backward one character.

M-f moves forward one “word.”

M-b moves backward one word.

C-e moves to the end of the current line.

C-a moves to the beginning of the current line.

C-M-f moves forward one Lisp (Scheme) S-expression.

C-M-b moves backward one Lisp (Scheme) S-expression.

M-a moves backward to next beginning-of-sentence. The precise meaning of “sentence” de-
pends on the mode.

M-{ moves backward to next beginning-of-paragraph. The precise meaning of “paragraph”
depends on the mode.

M-e moves to the next end-of-sentence.

M-} moves to the next end-of-paragraph.

C-n moves down to the next line (at roughly the same horizontal position, if possible).

C-p moves up to the previous line.

C-v scrolls the text of the current window up roughly one window-full (i.e., exposes text later
in the buffer). If ARG is supplied, it scrolls up ARG lines.

M-v scrolls the text of the current window down roughly one window-full (i.e., exposes text
earlier in the buffer). If ARG is supplied, it scrolls down ARG lines.

C-M-v scrolls up the text in another window (if any) roughly one window-full. If ARG is
supplied, it scrolls up ARG lines.

M-< moves to the beginning of the current buffer, after setting the mark (see §3.3) to the
current point. If ARG is supplied, it moves to a point ARG/10 of the way through the
buffer, instead of the beginning.

M-> moves to the end of the current buffer. If ARG is supplied, it moves to a point ARG/10
of the way back from the end of the buffer, instead of the end.

M-g goes to the line number given by the argument (prompts for a number in the echo line,
if you haven’t supplied an argument).

M-x what-line displays the number of the current line in the current buffer.



6 P. N. Hilfinger

3.3 Regions

In addition to a point (marked by the cursor in the current window), each buffer may contain
a mark. Everything between the point and mark is called the current region. The current
region typically delimits text to be manipulated by certain commands.

C-@ sets the mark at the current point, and pushes the previous mark on a ring of marks. If
ARG is present, it instead puts the point at the current mark and pops a new mark off
this ring.

C-SPC is the same as C-@.

C-x C-x exchanges the point and the mark.

M-@ sets the mark after the end of the next word.

M-h sets the region (point and mark) around the current paragraph.

C-x h sets the region (point and mark) around the entire current buffer.

3.4 Deletion

DEL deletes the character preceding the cursor. At the beginning of a line, it deletes the
preceding end-of-line character, thus joining the current and preceding lines.

M-DEL deletes the word preceding the cursor. The deleted word moves to the kill buffer,
described later.

C-d deletes the character under the cursor (which can be the end-of-line).

M-d deletes the word following the cursor.

C-k deletes the rest of the line following the cursor. If the cursor is on the end-of-line, delete
the end-of-line. The deleted line moves to the kill buffer.

M-\ deletes all horizontal blank space on either side of the cursor.

M-SPC deletes all but one horizontal blank space surrounding the cursor.

C-x C-o on non-blank line, deletes all immediately following blank lines; on isolated blank
line, deletes the line; on other blank lines, deletes all but one.

C-w deletes everything between the point and the mark, moving the deleted text to the kill
buffer.

M-w copies everything between point and mark to the kill buffer, without actually deleting it.



Highlights of GNU Emacs 7

3.5 Insertion and the kill buffer

Several of the preceding commands mention the kill buffer. Text that is deleted is appended
to the end of the current kill buffer, and can later be retrieved and inserted (“pasted” or
“yanked”) elsewhere in the text (even in another buffer different from its original source).
Normally, each time a command that does not append to the kill buffer is executed, the
current kill buffer is saved in a ring of kill buffers, and the next deletion command starts with
an empty kill buffer. Hence, to move a sequence of lines, one can issue a sequence of C-k
commands, with no intervening commands, move to the desired destination, and yank them
back (with C-y).

C-y inserts the contents of the current kill buffer at the cursor, and moves cursor to end of
inserted text. If a numeric value of ARG is supplied, inserts the ARG th most recent kill
buffer in the ring.

C-u C-y inserts current kill buffer, as for C-y, but leaves point unchanged.

M-y when issued immediately after a C-y or M-y, deletes the text inserted by the C-y or M-y
and substitutes the text from the next kill buffer in sequence in the kill ring.

C-M-w causes the next command, if a kill command, to append to the end of previous kill
buffer, rather than starting with a new one. This allows you, for example, to delete
lines from several different places and then yank them back into one place.

3.6 Indentation

Indentation generally depends on the mode of the buffer. When a buffer is associated with a
‘.scm’ file, in particular, it is by default in Scheme mode, in which the standard indentation
referred to below is appropriate for Scheme source programs.

TAB indents as appropriate for the current mode. In text files, this is just an ordinary
typewriter-style tab command. In Scheme source files, it indents to the appropriate
point for a standard set of indentation conventions.

LFD is the same as RET TAB. Thus, if in typing in a Scheme program, you end each line with
LFD instead of RET, your program will be indented as you enter it.

M-; indents for a comment according to the current mode. In Scheme mode, this inserts ;.

M-LFD when used inside a comment, will close the comment, if necessary, go to a new line,
and start a properly-indented comment on that line.

C-x TAB indents the current region “rigidly” by ARG spaces to the right (default 4). Negative
arguments indent to the left. Tabs are correctly counted as the appropriate number of
blanks.

C-M-\ indents the current region according to the current mode. For an improperly-indented
Scheme program, for example, this will correct all the indentation within the region.



8 P. N. Hilfinger

3.7 Miscellaneous manipulations

C-o inserts a newline after the cursor. This has the same effect as RET C-b (return and then
back up one character).

C-t transposes the character under the cursor with the preceding character. If an end-of-line
is under the cursor, transposes the preceding two characters.

M-t transposes the next word that begins left of the cursor with the word following.

C-x C-t transposes the current and preceding lines.

M-c capitalizes the next word (making all characters other than the first lower case).

M-u converts the next word to all upper case.

M-l converts the next word to all lower case.

3.8 Using the mouse

When you are using Emacs with the X window system, you may use the mouse for simple
positioning, text deletion, and text insertion. The three mouse buttons indicate the operation
to be performed, and the mouse pointer (the slanting arrow, which we’ll usually just call the
pointer) usually indicates the position at which to perform it. In the following, the mouse
buttons are called ‘LB’, ‘MB’, and ‘RB’, for left button, middle button, and right button.
We’ll use C-B to indicate the result of holding down “Control” while pushing button B.

LB places the point and mark at the position (and in the buffer) indicated by the pointer.
You may then drag the mouse with LB depressed; this leaves the mark at the point you
pressed LB and moves the point (and cursor) to the point at which you release LB, thus
defining a new current region.

RB first extends the current region to include all the text between the existing current region
(or the point, if there is no current region) and the pointer. Next, it copies the text
in the current region into the kill buffer, as for M-w above. When clicked twice for the
same text, it also deletes the text. Finally, it also copies the text into something called
the window-system cut buffer. Text in the window-system cut buffer may be “pasted”
(inserted) by MB, as described below, not only into Emacs buffers, but also into any
other X-windows buffer.

MB pastes (inserts) text from the window system cut buffer at the point indicated by the
mouse, and puts the cursor at the beginning and the mark at the end of the inserted
text. This is somewhat like a mouse version of C-y. However, since it takes its text
from the window system cut buffer (common to all windows on the screen), it allows
the insertion of text from or to a window other than the one running Emacs.



Highlights of GNU Emacs 9

C-LB Displays a menu of buffers to move to and allows you to select one (a mouse version of
C-x b, described later).

You may also use the mouse to select from menus that sprout from the menu bar at the
top of your Emacs screen. The content of these menus depends on the kind of buffer you are
in.

4 Context searches

The search commands provide a convenient way to position the cursor quickly over long
distances. One can search either for specific strings or for patterns specified by regular ex-
pressions. Both kinds of searches are carried out incrementally ; that is, as you type in the
target string or pattern, the cursor’s position is continually changed to point to the first point
in the buffer (if any) that matches what you have typed so far.

C-s searches forward incrementally.

C-s C-s is as for C-s, but initialize the search string to the one used in the last string search.

C-M-s is as for C-s, but searches for a regular expression.

C-M-s C-s As for C-M-s, but initialize the search pattern to the last pattern used.

C-r Search backward incrementally.

C-r C-r As for C-r, but initialize the search string as for C-s C-s.

M-x occur prompts for a regular expression and lists each line that follows the point and
contains a match for the expression in a buffer. If you give an ARG, it will list that
number of lines of context around each match.

M-x count-matches prompts for a regular expression and displays in the echo area the num-
ber of lines following the point that contain a match for it.

M-x grep prompts for arguments to the UNIX grep utility (which searches files for lines
matching a given regular expression) and runs it asynchronously, allowing other editing
while the search continues. See the command C-x ‘ in §10.1 for a description of how
to look at each of the lines found in turn.

M-x kill-grep stops a grep that was started by M-x grep.

As you type the search string or pattern, the cursor moves in the appropriate direction
to the first matching string, if any (specifically, to the right end of that string for a forward
search and to the left end for a reverse search). By default, the case (upper or lower) of
characters is ignored as long as the pattern you type contains no upper-case characters; ‘a’
will each match either ‘a’ or ‘A’. When the pattern contains at least one upper-case character,
the search becomes case-sensitive; ‘a’ will not match ‘A’, nor will ‘A’ match ‘a’. If matching



10 P. N. Hilfinger

fails at any point, you will receive a message to that effect in the echo area. While entering
a search string or pattern, certain command characters have altered effects, as follows.

RET ends the search, leaving the point at the string found, and setting the mark at the original
position of the point.

DEL undoes the effect of the last character typed (and not previously DELed), moving the
search back to wherever it was previously.

C-g aborts the search and returns the cursor to where it was at the beginning of the search.

C-q quotes the next character. That is, it causes the next character to be added to the search
string or pattern as an ordinary character, ignoring any control action it might normally
have. Use this, for example to search for a C-g character or, in a regular-expression
search, to search for a ‘.’.

C-s begins searching forward at the point of the cursor for the next string satisfying the
search string or pattern. If used in a reverse search, therefore, this reverses the sense
of the search. If used at the point of a failing search, this starts the search over at the
beginning of the buffer (“wraps around”).

C-r is like C-s, but searches in the reverse direction, and can reverse the direction of a forward
search.

C-w adds the next word beginning at the cursor to the end of the search string or pattern. It
follows that this has the effect of moving the cursor forward over that word.

LFD adds the rest of the line to the end of the current search string or pattern.

Other control characters terminate the search, and then have their ordinary effect.
Ordinary searches (C-s and C-r) treat all ordinary characters as search characters. For

regular-expression searches, several of these characters have special significance. See also the
on-line documentation.

. matches any character, except end-of-line.

^ matches the beginning of a line (that is, it matches the empty string, and only at the
beginning of a line.)

$ matches the end of a line.

[· · ·] matches any of the characters between the square brackets. A range of characters may
be denoted using ‘-’, as in [a-z0-9], which denotes any digit or letter. To include ‘]’
as one of the characters, put it first. To include ‘-’, use ‘---’. To include ‘^’, do not
make it the first character.

[^· · ·] matches any of the characters not included in the ‘· · ·’. Thus, if end-of-line is not one
of the characters, this will match it.



Highlights of GNU Emacs 11

* when following another regular expression, denotes zero or more occurrences of that reg-
ular expression—in other words, an optional occurrence. This character applies to the
immediately preceding regular expression; it has “highest precedence.” There are spe-
cial parentheses (see below) for cases where this is not what you want. Hence, the
pattern ‘.*’ denotes any number of characters, other than end-of-line. The pattern
‘[a-z][a-z0-9 ]*’ denotes a letter optionally followed by string of letters, digits, and
underscores.

+ is like ‘*’, but denotes at least one occurrence. Thus, ‘[0-9]+’ denotes an integer literal.

? is like ‘*’, but denotes zero or one occurrence. Hence, the pattern ‘[0-9]+,?’ denotes an
integer literal optionally followed by a comma.

\(· · ·\) groups the items ‘· · ·’. Hence, ‘\([0-9]+,\)?’ denotes an optional string consisting
of an integer literal followed by a comma. The pattern ‘\(01\)* denotes zero or more
occurrences of the two-character string ‘01’.

\b matches the empty string at the beginning or end of a word. Hence, ‘\bring\b’ matches
“ring” standing alone, but not “string” or “rings”.

\B matches the empty string, provided that it is not at the beginning or end of a word.

\| matches a string matching either the regular expression to its left or to its right. Use ‘\(\)’
to limit what regular expressions it applies to. Thus, ‘\bf[a-z]+\|[0-9]+’ matches any
integer literal or any word that begins with ‘f’, while ‘\bf\([a-z]+\|[0-9]+\)’ matches
any “word” that begins with ‘f’ and continues with either all letters or with all digits.

\n where n is any digit, denotes the string that matched the pattern within the nth set of
‘\(\)’ brackets in the current regular expression. Thus, ‘\b\([0-9]+\), *\1’ matches
any integer literal that is followed by a comma, an optional space, and a repetition of
the same literal; it matches “23, 23” and “10,10”, but not “23, 24”.

5 Replacement

The following commands allow you to do systematic replacement of one string or pattern with
another within a given buffer.

M-% performs a query-replace operation. It prompts for a search string and a replacement
string. Terminate each of the two with a RET. The command will then display each in-
stance of the search string found, and prompt for its disposal. The options are described
below. If ARG is supplied, it will only match things surrounded by word boundaries, so
that if the search string is “top”, there will be no replacement inside the string “stop”
or “topping”.

M-X query-replace-regexp is the same as M-%, but replaces patterns designated by regular
expressions, rather than just simple strings. The replacement string may contain in-
stances of ‘\n’, for n a digit, which, as described in the section on regular expressions,



12 P. N. Hilfinger

denotes the string matched by the nth regular expression in ‘\(\)’ braces in the search
string. Thus, for example, the search pattern ‘(\([a-z ][a-z0-9 ]+\))’ with the re-
placement pattern ‘[\1]’ will replace each C identifier surrounded by parentheses by
the same identifier surrounded by square brackets.

By default, the replacement will preserve the case of the letters replaced if the search string or
pattern has no upper-case letters, and otherwise will use the case supplied in the replacement
string.

At each instance of the search string or pattern, you are prompted for an action. Here
are some common ones.

SPC replaces the indicated occurrence and goes to the next.

DEL keeps the indicated occurrence unchanged and go to the next.

RET exits with no further replacements.

, makes one replacement, but waits for another SPC or DEL before moving to the next match.

. makes one replacement and then exits.

! replaces all remaining occurrences without prompting again.

? prints a help message.

C-r enters a recursive edit level. That is, you are put back in ordinary Emacs at the point
of the current occurrence and can edit in the usual manner. Typing C-M-c then goes
back to the query-replace command.

y same as SPC.

n same as DEL.

q same as RET.

In addition to replacement, there are two often-useful commands for deleting selected
lines.

M-x delete-matching-lines prompts for a regular expression and deletes (without prompt-
ing) each line after the point that contains a match for it.

M-x delete-non-matching-lines prompts for a regular expression and deletes each line
after the point that does not contain a match for it.

6 Files, buffers, and windows

Each buffer has a name. By default, buffers that are associated with particular files have the
name of that file (not including the name of the directory containing it), possibly followed by
a number in angle brackets to distinguish multiple files (from different directories with the
same name.



Highlights of GNU Emacs 13

6.1 Loading into and storing from buffers

C-x C-f prompts for a file name and sets the current window to displaying that file in a buffer
having the same name. If a buffer displaying that file already exists, this command
merely switches the window to that buffer. If the file does not exist, the buffer is
initially empty. The buffer is subsequently associated with the file. This process is
called finding the file.

C-x 4 C-f prompts for a file name, goes to the next window on the screen (creating a new
one, if there is only one), and then acts like C-x C-f.

C-x C-s saves the current buffer in its associated file, if the buffer has been modified. If
the file being saved exists, then the old version is first renamed to have a tilde (~ )
appended to its name, if no such file yet exists.

C-x C-w prompts for a file name and saves the current buffer into that file. Generally, it is
preferable and safer to use C-x C-f or C-x 4 C-f and then use C-x C-s, but sometimes
this command is handy.

C-x i prompts for a file name and inserts that file at the point. It does not associate the
inserted file with the current buffer.

M-x revert-buffer throws away the contents of the current buffer and restores the contents
of the associated file. It will ask you to confirm these actions before taking them.

6.2 Manipulating buffers and windows

C-x o makes another window on the screen (if any) the current window.

C-x 0 deletes the current window, expanding another window to take its place. The buffer
being displayed in the current window is not affected.

C-x 1 makes the current window the only window on the screen, deleting all others. The
buffers being displayed in the deleted windows are not affected.

C-x 2 splits the current window into two vertically (one on top of the other), both displaying
the same buffer.

C-x 3 splits the current window into two horizontally (beside each other), each displaying
the same buffer.

C-x b prompts for a buffer name and switches the current window to that buffer. When
trying to move to a buffer associated with a file, it is better to use the file finding
commands.

C-x C-b lists the active buffers in a window.



14 P. N. Hilfinger

C-x k prompts for a buffer name and deletes that buffer, displaying some other buffer in the
current window. You will be warned if the contents of the buffer have been modified
and not yet saved.

6.3 Auto-saving and recovery

Buffers that are associated with files are periodically saved (“auto-saved”) in files whose names
begin and end with ‘#’. After a crash, you can return yourself to the point at which the last
auto-save of a given file took place by using the following command in place of C-x C-f or
C-x 4 C-f.

M-x recover-file prompts for a file name, F . It then tries to recover the contents of that
file from an auto-save file (named #F#) in the same directory, if such a file exists and
is younger than the any file named F in the directory. After completing this command,
C-x C-s will save the recovered file to F .

7 On-line documentation

7.1 UNIX documentation

Emacs has a simple interface to the standard UNIX ‘man’ command, which provides docu-
mentation to UNIX commands:

M-x manual-entry prompts for a topic (a UNIX command or subprogram name, usually),
and displays the man page for it, if any, in a buffer. The buffer is a perfectly ordinary
buffer; you may put the cursor in it and move around using ordinary Emacs navigational
commands.

7.2 Basic Emacs help

The help command, C-h, provides a variety of useful documentation. The character following
C-h indicates the specific kind of service desired; the descriptions of several of these follow.

C-h a prompts for a pattern (regular expression) and displays a buffer containing all com-
mands whose name contains a match to that pattern, together with a short description
and the key sequence to which the command is bound, if any.

C-h b displays a buffer containing all bindings of commands to keys. The display is in two
parts: the global bindings that apply by default in any buffer, and the local bindings
that apply only when one is in the current buffer, and override any global binding in
that buffer.

C-h f prompts for a function name and then displays its full documentation in a buffer.

C-h C-h documents the help command itself.

C-h i runs the ‘info’ documentation reader (see below).



Highlights of GNU Emacs 15

C-h k prompts for a command key sequence and describes the function invoked by that
sequence.

C-h m prints documentation about the mode of the current buffer.

C-h t puts you into an Emacs tutorial.

C-h w prompts for a function name and tells what key, if any, invokes it.

7.3 The info browser

The key sequence C-h i invokes the documentation browsing system, info. Actually, this
is little more than a buffer with some special bindings to the keys. Aside from the special
bindings, the ordinary Emacs commands will work while inside the info buffer. At any
time, the info buffer, whose name is *info*, contains a node, a section of text documenting
something. These nodes are connected to each other in such a way that one can move quickly
from one node to another that covers a related topic. Some nodes contain menus, indicated
by lines that begin

* Menu:

The lines after this give the names of other nodes, and descriptions of their contents. One
such entry reads as follows.

* Commands:: Named functions run by key sequences to do editing.

The word(s) between the asterisk and the double-colon name another node. The following
key commands, defined only when in the buffer *info*, allow one to move through the
documentation. They are only a few of the ones provided.

m prompts for the name of a node from the menu in the current buffer and displays that
node. You need only enter enough to identify the desired entry unambiguously; case is
ignored.

f follows a cross-reference. Cross references are indicated in the text of a node by a phrase
of the form “* Note foo::”. One follows them by typing ‘f’ followed by the name (foo)
of the referenced node, as for the ‘m’ command.

l goes back to the last-visited node.

u goes up to the parent of this node. The definition of parent is actually arbitrary, but is
usually a node that contains the current one in its menu.

d returns to the top (initial) node of the Info system.

q suspends the browser and goes back to where you were when you issued C-h i.

. returns to the beginning of the text of the current node.

? furnishes help about the browser commands.



16 P. N. Hilfinger

8 The shell

It is possible to run a UNIX shell under Emacs, and this allows any number of useful effects.
The command M-x shell moves to a buffer named *shell* that is running a UNIX shell
(creating it if necessary). Anything typed into this buffer is sent to the shell, just it would
be outside of Emacs. Any output produced as a result of the commands sent to the shell is
placed at the end of the shell buffer. Because the shell is running in an Emacs window, the
contents of the shell can be edited and navigated freely, and the entire record of the input
and output to the shell is available at all times. A few keys have slightly different-from-usual
meanings in the shell buffer.

RET sends whatever line the cursor is on to the shell and moves to the end of the shell buffer.
Hence, one can repeat a command by placing the cursor anywhere in it and typing RET.

TAB attempts to complete the immediately preceding file name.

C-c C-c is the same as a single C-c outside Emacs.

C-c C-d is the same as C-d (end-of-file) outside Emacs.

C-c C-z is the same as C-z outside Emacs.

C-c C-u kills the current line of input to the shell.

It is sometimes useful to run a single shell command over a region of text in a buffer.

M-| prompts for a shell command and executes it, giving the current region as the standard
input. If the M-| is preceded by C-u, the output of the command replaces the region.
Otherwise, the output goes to a separate buffer. For example, to sort the lines in the
current region, enter the command C-u M-| sort.

9 Running Scheme under Emacs

The best way to run Scheme from a workstation is to do so through Emacs. Just as you
can create an Emacs buffer for communicating with a UNIX shell (§8), you can also do so to
communicate with a Scheme interpreter. Not only can you interact with the interpreter, but
you can also feed files or definitions that you are editing to a running interpreter conveniently
without having to load them explicitly.

The command M-x run-scheme moves to a buffer named *scheme* that is running the
Scheme interpreter, creating this buffer if necessary. Each line that you type into this buffer
gets sent to the interpreter, just as if you had typed it in while running the interpreter
outside of Emacs. Any output from the interpreter in response to your input is appended to
the *scheme* buffer.

The usual way to create and execute a Scheme program is as follows.



Highlights of GNU Emacs 17

• Using Emacs, create a file to contain your program (or load one that you’ve already
started) using C-x C-f or C-x 4 C-f; let’s suppose the file is named something.scm (so
that within Emacs, it lives in a buffer of the same name). We have configured Emacs so
that any file ending in .scm gets edited in Scheme mode, which gives a special meaning
to the keys TAB, LFD, and others described below.

• Edit or add to your file as needed. When typing definitions into the Emacs buffer
for something.scm, using the TAB key at the beginning of each line will automatically
indent that line properly. Alternatively, you can end each line by typing LFD instead of
RET; in Scheme mode, LFD is short for RET TAB. If in the process of editing the buffer,
you mess up the indentation of a definition, place the cursor at the beginning of the
definition (on or before the opening ‘(’) and type M-C-q, which will correctly indent the
entire definition.

• Make sure you have a Scheme buffer (named *scheme*) running under Emacs (M-x
run-scheme) will create one if you don’t).

• In the buffer for something.scm, type C-c M-l to load your program into the running
Scheme interpreter. Emacs will ask you for a file name; just type RET, which will
use something.scm. If you haven’t saved your changes to something.scm, Emacs will
ask if it should do it for you. The effect of C-c M-l is to send the command (load

"something.scm") to the Scheme interpreter and also to put the cursor in the *scheme*
buffer, ready to enter Scheme expressions. You’ll see the usual response to the load

command in the *scheme* buffer.

• Sometimes—especially when you are correcting a file whose contents you’ve already
loaded into Scheme—it is convenient to send just a single revised definition to the
Scheme interpreter. To so do, place the cursor at the beginning of the definition (on or
before the opening ‘(’) and type C-c M-e. This also puts you into the Scheme buffer.

Here is a concise summary of the Scheme-related commands. These commands are also
available from the menu bar. With the exception of M-x commands, all of these commands
are in effect only in buffers that are in Scheme mode (normally, those containing files whose
name ends in .scm).

M-x run-scheme when used for the first time, creates a buffer named *scheme* and runs the
Scheme interpreter in it, displaying input from you and output from the interpreter. If
the buffer already exists, this command simply moves to that buffer.

C-c C-z puts the cursor in the *scheme* buffer.

C-c M-e sends the definition after the cursor to Scheme (that is, it copies it the *scheme*

buffer and then sends it to the Scheme interpreter that attached to that buffer). The
command also places the cursor at the end of the *scheme* buffer.

C-c C-e is the same as C-c M-e, but leaves the cursor where it is.



18 P. N. Hilfinger

C-c M-l loads an entire file into Scheme Prompts for a file name; the default is the current
buffer’s file. Puts the cursor at the end of the *scheme* buffer.

C-c C-l is the same as C-c M-l, but leaves the cursor where it is.

C-c M-r sends all the text in the current region to Scheme and puts the cursor at the end of
the *scheme* buffer.

C-c C-r is the same as C-c M-r, but leaves the cursor where it is.

M-C-q indents the definition after the cursor according to the usual rules for indenting Scheme
expressions.

M-C-\ indents all Scheme expressions in the current region.

TAB indents the current line of Scheme code as appropriate for the surrounding context.

LFD is the same as RET TAB.

10 Compiling, debugging, and tags

[This section is not relevant to CS61A.] Emacs provides rather nice ways of compiling pro-
grams, correcting any compilation errors, and debugging the results. It is so much more
convenient than entering compilation commands directly from a shell that there is no excuse
not to use it.

10.1 Compilation

M-x compile prompts for a shell command, and then executes that command in a special
buffer, named *compilation*. The current file at the time the M-x compile is issued
determines the directory in which the shell command executes. The default command
is simply make -k. Assuming you follow the convention of putting an appropriate make

input file named makefile or Makefile in each source directory, this command will
generally do the right thing. While the compilation proceeds, you are free to edit or use
the *shell* buffer.

C-x ‘ finds the next error message in the buffer *compilation* (if any), finds the source files
and line referred to by the error message, and displays the error message in one window
and the source file in another. Thus, after a compilation is complete (actually, even while
it proceeds), you can step through the error messages produced, going automatically
to the offending points in the source file so that they can be corrected. The buffer
*compilation* also contains the output from the M-x grep command described in §4.

M-x kill-compiler cancels a compilation started by M-x compile, if any.



Highlights of GNU Emacs 19

10.2 Using GDB under Emacs

[This section is not relevant to CS61A.] The GNU debugger, GDB, is an interactive source-
level debugger for C and several other languages. It can be run under Emacs, which provides
a few rather nifty additional features. Full on-line documentation of gdb is available using
the C-h i command in Emacs. The command M-x gdb will prompt for an executable file
name, and then run GDB on that file, displaying the interaction in a buffer that acts much
like a shell buffer described previously. Within that buffer, however, several commands have
a slightly different meaning. In addition, whenever GDB displays the current position in the
program (for example, after a step, at a breakpoint, or after an interrupt), Emacs will try to
display the indicated source file and line in another window, with an arrow (‘=>’) pointing at
the corresponding line in the source text (this arrow is not actually in the file being displayed).

The following commands are peculiar to GDB buffers.

C-c C-n performs a GDB ‘next’ command (step to next line in the source program).

C-c C-s performs a GDB ‘step’ command (step to next line in the source program to be
executed, stopping at the beginning of any procedure that gets called.)

C-c C-i performs a GDB ‘stepi’ command (step to next machine-language instruction—not
usually used unless you are programming in assembly language.

C-c < performs a GDB ‘up’ command (go up to procedure that called current one).

C-c > performs a GDB ‘down’ command (opposite of ‘up’).

C-c C-r performs a GDB ‘finish’ command (continues from last breakpoint).

C-c C-b set a breakpoint at the current position in the program (as indicated by the position
of the ‘=>’ arrow).

C-c C-d delete a breakpoint (if any) at the current position in the program (as indicated by
the position of the ‘=>’ arrow).

In addition, within any source file buffer, there is the following command.

C-x SPC puts a break point at the point in the program indicated by the cursor.

10.3 Tags

In UNIX terminology, a tag table is an index that tells how to find the definition of any
certain identifiers (‘tags’) defined in some collection of source files. In effect, it provides a
smart, multi-file search that is particularly useful when navigating in non-trivial directories
of source files. Typically, you set things up by going into the directory containing the source
text to be indexed and issuing the UNIX command

etags options files



20 P. N. Hilfinger

where files is a list of all the source files that need to be indexed. This creates a file named
‘TAGS’ containing the tag table. For C programs, the tags are the names of functions defined
in the named source files. The -t option causes etags to record typedef declarations as well.
The tag table produced is organized in such a way that simple edits to a source file will not
invalidate it. The following Emacs commands deal with tag tables.

M-x visit-tags-table prompts for the name of a tags table file, and uses its contents in
future tag-related searches.

M-. prompts for a tag and then positions the current window in the file containing its first
definition and puts the cursor on that definition. You may also give a null response
(just RET), in which case the word before or around the point is used as the tag.

C-u M-. finds the next alternate definition of the last tag specified.

C-x 4 . is the same as M-., but displays the text containing the tag in the other window
instead of the current one.

M-x tags-search prompts and searches for a regular expression as for C-M-s, but is does a
non-incremental search through all the files given in the currently-visited tag table.

M-x tags-query-replace acts like M-Q, but looks through all the files given in the currently-
visited tag table.

M-, restarts the last tags-search or tags-query-replace from the current location of the
point.

M-x tags-apropos prompts for a regular expression and displays a list of all tags in the
currently-visited table that match it.

11 But wait; there’s more!

As indicated at the beginning, this is not a complete reference manual. It has not covered
scrolling sideways, tab setting, the mail system, the Emacs internal Lisp dialect, automatic
abbreviation, the spelling checker, the directory editor, the change-log editor, or how to
replace all groups of lines of your program that are indented more than ARG spaces by
‘. . .’1. You can learn about these and other topics by using C-h i. You might also try typing
C-h f SPC C-x o, which creates a buffer containing the names of all Emacs functions and
then puts the cursor there so that you can scroll through and look for likely-sounding names.

Just use it. Every session is an adventure.

1You probably think I’m kidding, don’t you? Guess again.


