
CS 61A Spring 2003 Week 1

Topic: Functional programming

Monday, 1/20 is a holiday.

Lectures: Wednesday 1/22, Friday 1/24

Reading: Abelson & Sussman, Section 1.1 (pages 1–31)

Note: With the obvious exception of this first week, you should do each week’s reading
before the Monday lecture. So also start now on next week’s reading, Abelson & Sussman,
Section 1.3

Homework due noon Monday, 1/27:

People who’ve taken CS 3: Don’t use the CS 3 higher-order procedures such
as every in these problems; use recursion.

1. Do exercise 1.6, page 25. This is an essay question; you needn’t hand in any computer
printout, unless you think the grader can’t read your handwriting. If you had trouble
understanding the square root program in the book, explain instead what will happen if
you use new-if instead of if in the pigl Pig Latin procedure.

2. Write a procedure squares that takes a sentence of numbers as its argument and
returns a sentence of the squares of the numbers:

> (squares ’(2 3 4 5))

(4 9 16 25)

3. Write a procedure switch that takes a sentence as its argument and returns a sentence
in which every instance of the words I or me is replaced by you, while every instance of
you is replaced by me except at the beginning of the sentence, where it’s replaced by I.
(Don’t worry about capitalization of letters.) Example:

> (switch ’(You told me that I should wake you up))

(i told you that you should wake me up)

4. Write a predicate ordered? that takes a sentence of numbers as its argument and
returns a true value if the numbers are in ascending order, or a false value otherwise.

5. Write a procedure ends-e that takes a sentence as its argument and returns a sentence
containing only those words of the argument whose last letter is E:

> (ends-e ’(please put the salami above the blue elephant))

(please the above the blue)

Continued on next page.

7



Week 1 continued...

6. Most versions of Lisp provide and and or procedures like the ones on page 19. In
principle there is no reason why these can’t be ordinary procedures, but some versions of
Lisp make them special forms. Suppose, for example, we evaluate

(or (= x 0) (= y 0) (= z 0))

If or is an ordinary procedure, all three argument expressions will be evaluated before or

is invoked. But if the variable x has the value 0, we know that the entire expression has
to be true regardless of the values of y and z. A Lisp interpreter in which or is a special
form can evaluate the arguments one by one until either a true one is found or it runs out
of arguments.

Your mission is to devise a test that will tell you whether Scheme’s and and or are special
forms or ordinary functions. This is a somewhat tricky problem, but it’ll get you thinking
about the evaluation process more deeply than you otherwise might.

Why might it be advantageous for an interpreter to treat or as a special form and evaluate
its arguments one at a time? Can you think of reasons why it might be advantageous to
treat or as an ordinary function?

Unix feature of the week: man

Emacs feature of the week: C-g, M-x apropos

There will be a “feature of the week” each week. These first features come first because they
are the ones that you use to find out about the other ones: Each provides documentation
of a Unix or Emacs feature. This week, type man man as a shell command to see the Unix
manual page on the man program. Then, in Emacs, type M-x (that’s meta-X, or ESC X if
you prefer) describe-function followed by the Return or Enter key, then apropos to see
how the apropos command works. If you want to know about a command by its keystroke
form (such as C-g) because you don’t know its long name (such as keyboard-quit), you
can say M-x describe-key then C-g.

You aren’t going to be tested on these system features, but it’ll make the rest of your life
a lot easier if you learn about them.

8



CS 61A Spring 2003 Week 2

Topic: Higher-order procedures

Lectures: Monday 1/27, Wednesday 1/29, Friday 1/31

Reading: Abelson & Sussman, Section 1.3

Note that we are skipping 1.2; we’ll get to it later. Because of this, never mind for now
the stuff about iterative versus recursive processes in 1.3 and in the exercises from that
section.

Don’t panic if you have trouble with the half-interval example on pp. 67–68; you can just
skip it. Try to read and understand everything else.

Homework due noon Monday, 2/3:

1. Abelson & Sussman, exercises 1.31(a), 1.32(a), 1.33, 1.40, 1.41, 1.43, 1.46

(Pay attention to footnote 51; you’ll need to know the ideas in these exercises later in the
semester.)

2. Last week you wrote procedures squares, that squared each number in its argument
sentence, and saw pigl-sent, that pigled each word in its argument sentence. Generalize
this pattern to create a higher-order procedure called every that applies an arbitrary

procedure, given as an argument, to each element of an argument sentence. This procedure
is used as follows:

> (every square ’(1 2 3 4))

(1 4 9 16)

> (every 1+ ’(1 2 3 4))

(2 3 4 5)

Continued on next page.

9



Week 2 continued...

Extra for experts:

In principle, we could build a version of Scheme with no primitives except lambda. Every-
thing else can be defined in terms of lambda, although it’s not done that way in practice
because it would be so painful. But we can get a sense of the flavor of such a language by
eliminating one feature at a time from Scheme to see how to work around it.

In this problem we explore a Scheme without define. We can give things names by using
argument binding, as let does, so instead of

(define (sumsq a b)

(define (square x) (* x x))

(+ (square a) (square b)))

(sumsq 3 4)

we can say

((lambda (a b)

((lambda (square)

(+ (square a) (square b)))

(lambda (x) (* x x))))

3 4)

This works fine as long as we don’t want to use recursive procedures. But we can’t replace

(define (fact n)

(if (= n 0)

1

(* n (fact (- n 1)))))

(fact 5)

by

((lambda (n)

(if ...))

5)

because what do we do about the invocation of fact inside the body?

Your task is to find a way to express the fact procedure in a Scheme without any way to
define global names.

Unix feature of the week: pine, mail, netscape

Emacs feature of the week: M-x info, C-x u (undo)

10



CS 61A Spring 2003 Week 3

Topic: Recursion and iteration

Lectures: Monday 2/3, Wednesday 2/5, Friday 2/7

Reading: Abelson & Sussman, Section 1.2 through 1.2.4 (pages 31–47)

Homework due noon Monday, 2/10:

Note: Programming project 1 will also be due on 2/10.

1. Abelson & Sussman, exercises 1.16, 1.35, 1.37, 1.38

2. A “perfect number” is defined as a number equal to the sum of all its factors less than
itself. For example, the first perfect number is 6, because its factors are 1, 2, 3, and 6,
and 1+2+3=6. The second perfect number is 28, because 1+2+4+7+14=28. What is
the third perfect number? Write a procedure (next-perf n) that tests numbers starting
with n and continuing with n+1, n+2, etc. until a perfect number is found. Then you
can evaluate (next-perf 29) to solve the problem. Hint: you’ll need a sum-of-factors

subprocedure.

[Note: If you run this program when the system is heavily loaded, it may take half an hour
to compute the answer! Try tracing helper procedures to make sure your program is on
track, or start by computing (next-perf 1) and see if you get 6.]

3. Explain the effect of interchanging the order in which the base cases in the cc procedure
on page 41 of Abelson and Sussman are checked. That is, describe completely the set of
arguments for which the original cc procedure would return a different value or behave
differently from a cc procedure coded as given below, and explain how the returned values
would differ.

(define (cc amount kinds-of-coins)

(cond

((or (< amount 0) (= kinds-of-coins 0)) 0)

((= amount 0) 1)

(else ... ) ) ) ; as in the original version

4. Give an algebraic formula relating the values of the parameters b, n, counter, and
product of the expt and exp-iter procedures given near the top of page 45 of Abelson
and Sussman. (The kind of answer we’re looking for is “the sum of b, n, and counter times
product is always equal to 37.”)

Continued on next page.

11



Week 3 continued...

Extra for experts:

1. The partitions of a positive integer are the different ways to break the integer into
pieces. The number 5 has seven partitions:

5 (one piece)

4, 1 (two pieces)

3, 2 (two pieces)

3, 1, 1 (three pieces)

2, 2, 1 (three pieces)

2, 1, 1, 1 (four pieces)

1, 1, 1, 1, 1 (five pieces)

The order of the pieces doesn’t matter, so the partition 2, 3 is the same as the partition
3, 2 and thus isn’t counted twice. 0 has one partition.

Write a procedure number-of-partitions that computes the number of partitions of its
nonnegative integer argument.

2. Compare the number-of-partitions procedure with the count-change procedure by
completing the following statement:

Counting partitions is like making change, where the coins are ...

3. (Much harder!) Now write it to generate an iterative process; every recursive call must
be a tail call.

Unix feature of the week: mkdir, cd, pwd, ls

Emacs feature of the week: C-M-f, C-M-b, C-M-n, C-M-p (move around Scheme code)

12



CS 61A Spring 2003 Week 4

Topic: Programming methodology

Lectures: Monday 2/10, Wednesday 2/12, Friday 2/14

Reading: No reading except the lecture notes.

Homework due noon Tuesday, 2/18:

1. The following is from page 33 of SICP. Describe the invariant of iter:

(define (factorial n)

(define (iter product counter)

(if (> counter n)

product

(iter (* counter product)

(+ counter 1))))

(iter 1 1))

2. Here is a different iterative factorial program. Describe the invariant of helper:

(define (factorial n)

(define (helper result counter)

(if (= counter 0)

product

(helper (* counter result)

(- counter 1))))

(helper 1 n))

3. Describe the invariant of the following Pig Latin program:

(define (pigl wd)

(define (pighelp wrd)

(if (vowel? (first wrd))

(word wrd ’ay)

(pighelp (word (butfirst wrd) (first wrd)))))

(pighelp wd))

4. The program of question 3 is more complicated than necessary; it could have been

(define (pigl wd)

(if (vowel? (first wd))

(word wd ’ay)

(pigl (word (butfirst wd) (first wd)))))

But this makes it harder to state the invariant clearly. Explain why, and find a way to
state the invariant anyway.

5. What is the domain of the pigl procedure? Be precise; exactly which arguments
successfully return a correct result?

Continued on next page.

13



Week 4 continued...

6. Prove that pigl must reach its base case, given an argument in its domain, like the
proof about fast-expt in the lecture notes.

7. Here is an excerpt from twenty-one.scm:

(define (play-customer customer-hand-so-far dealer-up-card rest-of-deck)

(cond ((> (best-total customer-hand-so-far) 21) -1)

((strategy customer-hand-so-far dealer-up-card)

(play-customer (se customer-hand-so-far (first rest-of-deck))

dealer-up-card

(bf rest-of-deck)))

(else

(play-dealer customer-hand-so-far

(se dealer-up-card (first rest-of-deck))

(bf rest-of-deck)))))

This procedure has three formal parameters. Customer-hand-so-far is of type hand (as
described in lecture); dealer-up-card is of type card. What about rest-of-deck? What
type is it? How should this be documented?

Extra for experts:

The following program is in ~cs61a/lib/bubsort.scm. Sort takes as its argument a
sentence of numbers, and returns a sentence with the same numbers in increasing order.
Figure out how it works, and document it properly, with data types, invariants, or other
assertions as appropriate.

(define (bubble sent)

(cond ((empty? (butfirst sent)) sent)

((<= (first sent) (first (bf sent)))

(se (first sent) (bubble (bf sent))))

(else (se (first (bf sent))

(bubble (se (first sent) (bf (bf sent))))))))

(define (sort sent)

(if (empty? sent)

’()

(let ((bub (bubble sent)))

(se (sort (butlast bub))

(last bub)))))

Unix feature of the week: rm, mv, cp, rmdir, ln -s

Emacs feature of the week: M-% (find and replace text)

Note: The first midterm is next week.

14



CS 61A Spring 2003 Week 5

Topic: Data abstraction

Midterm Wednesday 2/19, 7–9pm.

Lectures: Monday 2/17, Wednesday 2/19, Friday 2/21

Reading: Abelson & Sussman, Sections 2.1 and 2.2.1 (pages 79–106)

Homework due noon Monday, 2/24:

Abelson & Sussman, exercises 2.7, 2.8, 2.10, 2.12, 2.17, 2.20, 2.22, 2.23

(Note: “Spans zero” means that one bound is ≤ zero and the other is ≥ zero!)

Extra for experts:

Write the procedure cxr-function that takes as its argument a word starting with c,
ending with r, and having a string of letters a and/or d in between, such as cdddadaadar.
It should return the corresponding function.

Unix feature of the week: head, tail, more, cat

Emacs feature of the week: M-x search-forward-regexp, M-x query-replace-regexp

15



CS 61A Spring 2003 Week 6

Topic: Hierarchical data

Lectures: Monday 2/24, Wednesday 2/26, Friday 2/28

Reading: Abelson & Sussman, Section 2.2.2–2.2.3, 2.3.1, 2.3.3

Homework due noon Monday, 3/3:

Note: Programming project 2 is also due 3/3. It consists of all the exercises in
Section 2.2.4 of the text. You can’t actually draw anything until you finish the project!
To begin, copy the file ~cs61a/lib/picture.scm to your directory. To draw pictures,
once you’ve completed the exercises:

> (cs)

> (ht)

> (===your-painter=== full-frame)

For example:

> (wave full-frame)

> ((square-limit wave 3) full-frame)

Abelson & Sussman, exercises 2.24, 2.26, 2.29, 2.30, 2.31, 2.32, 2.36, 2.37, 2.38, 2.54.

Some of these exercises are harder than they look; don’t give up in frustration if your early
attempts fail.

Extra for experts:

Read section 2.3.4 and do exercises 2.67–2.72.

Unix feature of the week: du, df, quota

Emacs feature of the week: M-q (format paragraphs), C-M-q (format Scheme code)

16



CS 61A Spring 2003 Week 7

Topic: Representing abstract data

Lectures: Monday 3/3, Wednesday 3/5, Friday 3/7

Reading: Abelson & Sussman, Sections 2.4 through 2.5.2 (pages 169–200)

Homework due noon Monday, 3/10:

Abelson & Sussman, exercises 2.75, 2.76, 2.77, 2.79, 2.80, 2.81, 2.83

Note: Some of these are thought-exercises; you needn’t actually run any Scheme programs
for them! (Some don’t ask you to write procedures at all; others ask for modifications to
a program that isn’t online.)

Extra for experts:

Another approach to the problem of type-handling is type inference. If, for instance,
a procedure includes the expression (+ n k), one can infer that n and k have numeric
values. Similarly, the expression (f a b) indicates that the value of f is a procedure.

Write a procedure called inferred-types that, given a definition of a Scheme procedure
as argument, returns a list of information about the parameters of the procedure. The
information list should contain one element per parameter; each element should be a two-
element list whose first element is the parameter name and whose second element is a word
indicating the type inferred for the parameter. Possible types are listed on the next page.

Continued on next page.

17



Week 7 continued...

? (the type can’t be inferred)

procedure (the parameter appeared as the first word in an unquoted expres-
sion or as the first argument of map or every)

number (the parameter appeared as an argument of +, -, max, or min)

list (the parameter appeared as an argument of append or as the
second argument of map or member)

sentence-or-word (the parameter appeared as an argument of first, butfirst,

sentence, or member?, or as the second argument of every)

x (conflicting types were inferred)

You should assume for this problem that the body of the procedure to be examined does
not contain any occurrences of if or cond, although it may contain arbitrarily nested and
quoted expressions. (A more ambitious inference procedure both would examine a more
comprehensive set of procedures and could infer conditions like ”nonempty list”.)

Here’s an example of what your inference procedure should return.

(inferred-types

’(define (foo a b c d e f)

(f (append (a b) c ’(b c)) (+ 5 d) (sentence (first e) f)) ) )

should return

((a procedure) (b ?) (c list) (d number)

(e sentence-or-word) (f x))

If you’re really ambitious, you could maintain a database of inferred argument types and
use it when a procedure you’ve seen is invoked by another procedure you’re examining!

Unix feature of the week: | (pipes in the shell)

Emacs feature of the week: M-x spell-buffer

Note: The second midterm exam is next week.

18



CS 61A Spring 2003 Week 8

Topic: Object-oriented programming

Midterm Wednesday 3/12, 7–9pm.

Lectures: Monday 3/10, Wednesday 3/12, Friday 3/14

Reading:

Read “Object-Oriented Programming—Above-the-line view” (in course reader).

Homework due noon Monday, 3/17:

Note: To use the OOP language you must first

(load "~cs61a/lib/obj.scm")

before using define-class, etc.

1. For a statistical project you need to compute lots of random numbers in various ranges.
(Recall that (random 10) returns a random number between 0 and 9.) Also, you need
to keep track of how many random numbers are computed in each range. You decide to
use object-oriented programming. Objects of the class random-generator will accept two
messages. The message number means “give me a random number in your range” while
count means “how many number requests have you had?” The class has an instantiation
argument that specifies the range of random numbers for this object, so

(define r10 (instantiate random-generator 10))

will create an object such that (ask r10 ’number) will return a random number between
0 and 9, while (ask r10 ’count) will return the number of random numbers r10 has
created.

2. Define the class coke-machine. The instantiation arguments for a coke-machine are
the number of Cokes that can fit in the machine and the price (in cents) of a Coke:

(define my-machine (instantiate coke-machine 80 70))

creates a machine that can hold 80 Cokes and will sell them for 70 cents each. The machine
is initially empty. Coke-machine objects must accept the following messages:

Continued on next page.

19



Week 8 continued...

(ask my-machine ’deposit 25) means deposit 25 cents. You can deposit several coins
and the machine should remember the total.

(ask my-machine ’coke) means push the button for a Coke. This either gives a Not

enough money or Machine empty error message or returns the amount of change you get.

(ask my-machine ’fill 60) means add 60 Cokes to the machine.

Here’s an example:

(ask my-machine ’fill 60)

(ask my-machine ’deposit 25)

(ask my-machine ’coke)

NOT ENOUGH MONEY

(ask my-machine ’deposit 25) ;; Now there’s 50 cents in there.

(ask my-machine ’deposit 25) ;; Now there’s 75 cents.

(ask my-machine ’coke)

5 ;; return val is 5 cents change.

You may assume that the machine has an infinite supply of change.

3. We are going to use objects to represent decks of cards. You are given the list
ordered-deck containing 52 cards in standard order:

(define ordered-deck ’(AH 2H 3H ... QH KH AS 2S ... QC KC))

You are also given a function to shuffle the elements of a list:

(define (shuffle deck)

(if (null? deck)

’()

(let ((card (nth (random (length deck)) deck)))

(cons card (shuffle (remove card deck))) )))

A deck object responds to two messages: deal and empty?. It responds to deal by
returning the top card of the deck, after removing that card from the deck; if the deck is
empty, it responds to deal by returning (). It responds to empty? by returning #t or #f,
according to whether all cards have been dealt.

Write a class definition for deck. When instantiated, a deck object should contain a shuffled
deck of 52 cards.

Continued on next page.

20



Week 8 continued...

4. We want to promote politeness among our objects. Write a class miss-manners that
takes an object as its instantiation argument. The new miss-manners object should accept
only one message, namely please. The arguments to the please message should be, first,
a message understood by the original object, and second, an argument to that message.
(Assume that all messages to the original object require exactly one additional
argument.) Here is an example using the person class from the upcoming adventure
game project:

> (define BH (instantiate person ’Brian BH-office))

> (ask BH ’go ’down)

BRIAN MOVED FROM BH-OFFICE TO SODA

> (define fussy-BH (instantiate miss-manners BH))

> (ask fussy-BH ’go ’east)

ERROR: NO METHOD GO

> (ask fussy-BH ’please ’go ’east)

BRIAN MOVED FROM SODA TO PSL

Extra for experts:

The technique of multiple inheritance is described on pages 9 and 10 of “Object-Oriented
Programming – Above-the-line view”. That section discusses the problem of resolving
ambiguous patterns of inheritance, and mentions in particular that it might be better to
choose a method inherited directly from a second-choice parent over one inherited from a
first-choice grandparent.

Devise an example of such a situation. Describe the inheritance hierarchy of your example,
listing the methods that each class provides. Also describe why it would be more appropri-
ate in this example for an object to inherit a given method from its second-choice parent
rather than its first-choice grandparent.

Unix feature of the week: foreach, grep, find

Emacs feature of the week: C-t (transpose), M-c, M-u, M-l (change case)

21



CS 61A Spring 2003 Week 9

Topic: Assignment, state, environments

Lectures: Monday 3/17, Wednesday 3/19, Friday 3/21

Reading: Abelson & Sussman, Section 3.1, 3.2

Also read “Object-Oriented Programming—Below-the-line view” (in course reader).

Homework due noon Monday, 3/31:

Abelson & Sussman, exercises 3.3, 3.4, 3.7, 3.8, 3.10, 3.11

Note: Part I of programming project 3 is also due 3/31.

Extra for experts:

The purpose of the environment model is to represent the scope of variables; when you see
an x in a program, which variable x does it mean?

Another way to solve this problem would be to rename all the local variables so that
there are never two variables with the same name. Write a procedure unique-rename that
takes a (quoted) lambda expression as its argument, and returns an equivalent lambda
expression with the variables renamed to be unique:

> (unique-rename ’(lambda (x) (lambda (y) (x (lambda (x) (y x))))))

(lambda (g1) (lambda (g2) (g1 (lambda (g3) (g2 g3)))))

Note that the original expression had two variables named x, and in the returned expression
it’s clear from the names which is which. You’ll need a modified counter object to generate
the unique names.

You may assume that there are no quote, let, or define expressions, so that every symbol
is a variable reference, and variables are created only by lambda.

Describe how you’d use unique-rename to allow the evaluation of Scheme programs with
only a single (global) frame.

Unix feature of the week: alias, unalias

Emacs feature of the week: C-x 4 (split window)

22



CS 61A Spring 2003 Week 10

Topic: Mutable data, queues, tables

Lectures: Monday 3/31, Wednesday 4/2, Friday 4/4

Reading: Abelson & Sussman, Section 3.3.1–3

(If you are a hardware type you might enjoy reading 3.3.4 even though it isn’t required.)

Homework due noon Monday, 4/7:

Abelson & Sussman, exercises 3.16, 3.17, 3.21, 3.25, 3.27

You don’t need to draw the environment diagram for exercise 3.27. Instead, use a trace
to provide the requested explanations. Treat the table procedures lookup and insert!

as primitive; i.e. don’t trace the procedures they call. Also, assume that those procedures
work in constant time. We’re interested to know about the number of times memo-fib is
invoked.

Note: Part II of programming project 3 is also due 4/7.

Extra for experts:

1. Abelson and Sussman, exercises 3.19 and 3.23.

Exercise 3.19 is incredibly hard but if you get it, you’ll feel great about yourself. You’ll
need to look at some of the other exercises you skipped in this section.

Exercise 3.23 isn’t quite so hard, but be careful about the O(1)—i.e. constant—time re-
quirement.

2. Write the procedure cxr-name. Its argument will be a function made by composing
cars and cdrs. It should return the appropriate name for that function:

> (cxr-name (lambda (x) (cadr (cddar (cadar x)))))

CADDDAADAR

Unix feature of the week: &, ^Z, fg, bg, jobs, kill

Emacs feature of the week: M-x abbrev-mode, M-x add-mode-abbrev

23



CS 61A Spring 2003 Week 11

Topic: networks, client/server

Lectures: Monday 4/7, Wednesday 4/9, Friday 4/11

Reading: No reading except the lecture notes.

Homework due noon Monday, 4/14:

These exercises use the Instant Message program, found in the following files:

cs61a/lib/im-client.scm

cs61a/lib/im-server.scm

cs61a/lib/im-common.scm

1. Invent the capability to send a message to a list of clients as well as to a single client. Do
this entirely in the client program, so what actually goes to the server is multiple requests.

2. Invent the capability to broadcast a message to every client. Do this by inventing a
BROADCAST command that the server understands.

3. Could #1 have been done with the server doing part of the work? Could #2 have been
done entirely in the client code? Compare the virtues of the two approaches.

4. Invent the capability of refusing messages from specific people. The sender of a refused
message should be notified of the refusal. Decide whether to do it entirely in the client or
with the server’s cooperation, and explain why.

5. Why is the 3-way handshake necessary when connecting to the server?

Extra for experts:

Using the Instant Message program as a starting point, write a mail server and client.
The mail server should maintain a database of messages for all users. (This can just be
a list; don’t worry about efficient lookup.) The client should be able to run the following
procedures:

(mail username message)

(get-mail)

Get-mail should return a list of messages, which should be deleted from the server.

If you want, you can improve this in several ways: Make deletion from the server be
explicitly requested by the client, invent a subject header (another argument to mail) and
have the client show just headers in get-mail and provide another command to read the
text of a specific message, and so on.

Unix feature of the week: diff, wc

Emacs feature of the week: M-a, M-e, M-{, M-}, M-<, M-> (move around buffer)

Note: Next week is the third midterm.

24



CS 61A Spring 2003 Week 12

Topic: Metacircular evaluator

Midterm Wednesday 4/16, 7–9pm.

Lectures: Monday 4/14, Wednesday 4/16, Friday 4/18

Reading: Abelson & Sussman, Section 4.1.1–6

A version of the metacircular evaluator is online in ~cs61a/lib/mceval.scm

Homework due noon Monday, 4/21:

1. Abelson & Sussman, exercises 4.3, 4.6, 4.7, 4.10, 4.11, 4.13, 4.14, 4.15

2. Modify the metacircular evaluator to allow type-checking of arguments to procedures.
Here is how the feature should work. When a new procedure is defined, a formal parameter
can be either a symbol as usual or else a list of two elements. In this case, the second
element is a symbol, the name of the formal parameter. The first element is an expression
whose value is a predicate function that the argument must satisfy. That function should
return #t if the argument is valid. For example, here is a procedure foo that has type-
checked parameters num and list:

> (define (foo (integer? num) ((lambda (x) (not (null? x))) list))

(nth num list))

FOO

> (foo 3 ’(a b c d e))

D

> (foo 3.5 ’(a b c d e))

Error: wrong argument type -- 3.5

> (foo 2 ’())

Error: wrong argument type -- ()

In this example we define a procedure foo with two formal parameters, named num and
list. When foo is invoked, the evaluator will check to see that the first actual argument
is an integer and that the second actual argument is not empty. The expression whose
value is the desired predicate function should be evaluated with respect to foo’s defining
environment. (Hint: Think about extend-environment.)

Extra for experts:

Abelson & Sussman, exercises 4.16 through 4.21

Unix feature of the week: !, history

Emacs feature of the week: C-x (, C-x ), C-x e (keyboard macros)

25



CS 61A Spring 2003 Week 13

Topic: concurrency

Lectures: Monday 4/21, Wednesday 4/23, Friday 4/25

Reading: Abelson & Sussman, Section 3.4

Homework due noon Monday, 4/28:

Abelson & Sussman, exercises 3.38, 3.39, 3.40, 3.41, 3.42, 3.44, 3.46, 3.48

Note: Part I of the fourth programming project is also due 4/28.

Extra for experts:

Read Section 3.3.5 and do exercises 3.33–3.37.

Unix feature of the week: echo, set, setenv, printenv

Emacs feature of the week: M-! (run shell command)

26



CS 61A Spring 2003 Week 14

Topic: Streams

Lectures: Monday 4/28, Wednesday 4/30, Friday 5/2

Reading: Abelson & Sussman, Section 3.5.1–3, 3.5.5

Homework due noon Monday, 5/5:

Note: Part II of project 4 is also due 5/5.

1. Abelson & Sussman, exercises 3.50, 3.51, 3.52, 3.53, 3.54, 3.55, 3.56, 3.64, 3.66, 3.68

2. Write and test two functions to manipulate nonnegative proper fractions. The first
function, fract-stream, will take as its argument a list of two nonnegative integers, the
numerator and the denominator, in which the numerator is less than the denominator. It
will return an infinite stream of decimal digits representing the decimal expansion of the
fraction. The second function, approximation, will take two arguments: a fraction stream
and a nonnegative integer numdigits. It will return a list (not a stream) containing the
first numdigits digits of the decimal expansion.

(fract-stream ’(1 7)) should return the stream representing the decimal expansion of
1

7
, which is 0.142857142857142857...

(stream-car (fract-stream ’(1 7))) should return 1.

(stream-car (stream-cdr (stream-cdr (fract-stream ’(1 7))))) should return 2.

(approximation (fract-stream ’(1 7)) 4) should return (1 4 2 8).

(approximation (fract-stream ’(1 2)) 4) should return (5 0 0 0).

Extra for experts:

1. Do exercises 3.59–3.62.

2. Consider this procedure:

(define (hanoi-stream n)

(if (= n 0)

the-empty-stream

(stream-append (hanoi-stream (- n 1))

(cons-stream n (hanoi-stream (- n 1))))))

It generates finite streams; here are the first few values:

(hanoi-stream 1) (1)

(hanoi-stream 2) (1 2 1)

(hanoi-stream 3) (1 2 1 3 1 2 1)

(hanoi-stream 4) (1 2 1 3 1 2 1 4 1 2 1 3 1 2 1)

Notice that each of these starts with the same values as the one above it, followed by some
more values. There is no reason why this pattern can’t be continued to generate an infinite
stream whose first 2n − 1 elements are (hanoi-stream n). Generate this stream.

Unix feature of the week: sort, cut, paste, join

Emacs feature of the week: C-x C-o, M-\ (delete blank space)

27



CS 61A Spring 2003 Week 15

Topic: Logic programming

Lectures: Monday 5/5, Wednesday 5/7, Friday 5/9

Reading: Abelson & Sussman, Section 4.4.1–3

We are not assigning section 4.4.4, which discusses the implementation of the query system
in detail. Feel free to read it just for interest; besides deepening your understanding of
logic programming, it provides an example of using streams in a large project.

Homework due noon Monday, 5/12:

Abelson & Sussman, exercises 4.56, 4.57, 4.58, 4.65

For all problems that involve writing queries or rules, test your solutions. To run the query
system and load in the sample data:

scm

(load "~cs61a/lib/query.scm")

(initialize-data-base microshaft-data-base)

(query-driver-loop)

You’re now in the query system’s interpreter. To add an assertion:

(assert! (foo bar))

To add a rule:

(assert! (rule (foo) (bar)))

Anything else is a query.

Extra for experts:

The lecture notes for this week describe rules that allow inference of the reverse relation
in one direction, i.e.,

;;; Query input:

(forward-reverse (a b c) ?what)

;;; Query results:

(FORWARD-REVERSE (A B C) (C B A))

Continued on next page.

28



Week 15 continued...

;;; Query input:

(forward-reverse ?what (a b c))

;;; Query results:

... infinite loop

or

;;; Query input:

(backward-reverse ?what (a b c))

;;; Query results:

(BACKWARD-REVERSE (C B A) (A B C))

;;; Query input:

(backward-reverse (a b c) ?what)

;;; Query results:

... infinite loop

Define rules that allow inference of the reverse relation in both directions, to produce the
following dialog:

;;; Query input:

(reverse ?what (a b c))

;;; Query results:

(REVERSE (C B A) (A B C))

;;; Query input:

(reverse (a b c) ?what)

;;; Query results:

(REVERSE (A B C) (C B A))

Unix feature of the week: perl, awk, sed

Emacs feature of the week: M-x shell-command-on-region

29


