
CS61A – Homework 1.2 Kurt Meinz
University of California, Berkeley Summer 2003

Topic: Higher-order procedures

Lectures: Wednesday June 25, Thursday June 26

Reading: Abelson & Sussman, Section 1.3

In this assignment you’ll gain experience with Scheme’s first class procedures and the lambda special form
for creating anonymous functions.

This homework is due at 8 PM on Sunday, June 29. Please put your answers into a file called hw1-2.scm
and submit electronically by typing submit hw1-2 in the directory where the file is located.

The book’s treatment of this subject is highly mathematical because it doesn’t introduce symbolic data (such
as words and sentences) until later. Don’t panic if you have trouble with the half-interval example on Page
67; you can just skip it. Try to read and understand everything else.

Question 1. Use higher-order functions such as every and keep presented in lecture to write the function
permute; don’t use explicit recursion! Permute takes two arguments, both sentences. The first sentence,
called the template, contains only numbers. A number n in the template corresponds to the nth word in the
second argument to permute (counting from 1). Permute should rearrange its second argument to conform
to the template:

STk> (permute ’(1 1 2 1) ’(summer is almost here))
(summer summer is summer)
STk> (permute ’(3 2 1) ’(strange blue chicken))
(chicken blue strange)
STk> (permute ’() ’(berkeley city council))
()

Don’t check for out-of-bounds numbers in the template. You may find item useful.

Question 2. This question builds on the sum procedure defined on Page 58.

A. The sum function allows one to add up the elements of a pattern defined by the parameters term and
next over some range [a, b]. Use sum to define a function sum-odds that takes two numbers and returns
the sum of all odd numbers between them, inclusive:

STk> (sum-odds 1 10)
25 ;; 1 + 3 + 5 + 7 + 9
STk> (sum-odds 4 9)
21 ;; 5 + 7 + 9
STk> (sum-odds 7 7)
7 ;; 7

Your definition of sum-odds must have the following form:

(define (sum-odds a b)
(sum ?? ?? ?? ??))

You may assume the first argument to sum-odds will be less than or equal to the second.

The excitement continues on the next page.
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B. What if we want to multiply numbers over a range? Define a function product that takes the same
arguments as sum but does multiplication rather than addition:

STk> (sum (lambda (x) 10) 1 (lambda (x) (+ x 1)) 3)
30
STk> (product (lambda (x) 10) 1 (lambda (x) (+ x 1)) 3)
1000

C. The factorial of a number n is 1 · 2 · 3 · ... · n. Use product to define a factorial function.

D. Now use product to approximate π using the formula:

π

4
=

2 · 4 · 4 · 6 · 6 · 8 · ...
3 · 3 · 5 · 5 · 7 · 7 · ...

Do this by writing a function pi that takes one numeric argument i. This parameter should in some
way control the number of terms computed; hence a larger value of i should yield a closer approximation
to π. Exactly what is meant by “number of terms” is up to you. All we care about is that a larger
value of i produces a better approximation. For example, our solution takes i to be the largest number
in the numerator:

STk> (pi 1000)
3.1431607055322752

Depending on the meaning you give to i and the algorithm you employ, you might not get as close an
approximation (or you might get an even closer one!). It is likely that making i too big will overload
the machine, so don’t be overeager.

One way to do this problem is to compute the numerator and denominator independently, then divide
them. While this can be done, it’s trickier than it looks because you have to ensure the same number
of terms in both, and, as you can see, the numerator and denominator don’t line up nicely. If you’re
stuck, try treating 2·4

3·3 as one unit.

E. Writing product after sum should have seemed redundant. They differ in only two ways: the combiner
function and the value returned in the base case (often called the “null value”). We’d like to generalize
the pattern exhibited by both functions to create a still more powerful procedure called accumulate.
This function should take all the arguments that sum and product do plus the two additional parame-
ters: the combiner and the null value. Once you have written accumulate both sum and product may
be defined in terms of it like this:

STk> (define (sum term a next b) (accumulate + 0 term a next b))
sum
STk> (define (product term a next b) (accumulate * 1 term a next b))
product

Use accumulate to define the function enumerate-interval, which takes two numeric arguments a
and b, where a ≤ b. It returns a sentence of all the numbers between a and b, inclusive:

STk> (enumerate-interval 3 10)
(3 4 5 6 7 8 9 10)
STk> (enumerate-interval -3 3)
(-3 -2 -1 0 1 2 3)

The excitement continues on the next page.
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Question 2. This question explores procedures as return values.

A. Define a procedure double that takes a one-argument function f and returns a procedure that
applies f twice:

STk> (define 1+ (lambda (x) (+ x 1)))
1+
STk> (define 2+ (double 1+))
2+
STk> ((double 2+) 10)
14

What value is returned by the following? Try to figure it out in your head first!

STk> (((double (double double)) 1+) 5)

B. Now generalize double by writing a procedure repeated that takes two arguments: a unary function
f and and a nonnegative integer n which is the number of times f should be applied. It should return
a procedure which applies f that many times:

STk> (repeated square 2)
#[closure arglist=(x) cd7fdc] ;; returns a procedure!
STk> ((repeated square 2) 5)
625
STk> ((repeated bf 3) ’(the matrix has you))
(you)
STk> ((repeated first 0) ’(luke i am your father)) ;; identity function
(luke i am your father)

A particularly elegant solution exists that uses compose from Exercise 1.42 in the book.
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