
CS61A – Homework 3.1 Kurt Meinz
University of California, Berkeley Summer 2003

Topic: Hierarchical data

Lectures: Monday July 7, Tuesday July 8

Reading: Abelson & Sussman, Section 2.2.2–2.2.3, 2.3.1, 2.3.3

In this assignment you’ll gain experience working with structures that have variable depth such as lists of
lists and the Tree and Mobile abstract data types. However, the book does not have a tree ADT. In fact,
when the book refers to “trees”—as in scale-tree on Page 112—it’s really talking about deep lists.

Our tree ADT—which consists of the functions make-tree, children and datum—is itself usually imple-
mented using lists:

(define make-tree cons)
(define datum car)
(define children cdr)

But remember, the underlying representation of any ADT is irrelevant! We can define make-tree and friends
in a thousand different ways. As you do this homework, fight the desire to think of a Mobile or a Tree in
terms of their underlying representations as lists.

This assignment is due at 8 PM on Sunday, July 13. Put your answers into a file called hw3-1.scm and
turn it in online with submit hw3-1 as usual.

Question 1. Write a function deep-map that takes a unary function and a (possibly) nested list. It should
apply the function to each atomic element of the list and return a new list with the same nested structure:

STk> (deep-map not ’(#f ((#f) (#t))))
(#t ((#t) (#f)))
STk> (deep-map (lambda (a) ’foo) ’())
()
STk> (deep-map (lambda (x) ’foo) ’(((((3) 4) (5)) 6)))
(((((foo) foo) (foo)) foo))
STk> (deep-map square ’(1 2 (3) 4))
(1 4 (9) 16)
STk> (deep-map list ’(1 2 (3) 4))
((1) (2) ((3)) (4))

Question 2. In this question we’ll make use of the Tree ADT presented in lecture. A Tree can have any
number of children. The constructor is make-tree and takes two arguments, the second of which is a list of
Trees which are the children. The selectors are datum and children. The following code builds up the tree
at right (from the bottom up):

(define eight (make-tree 8 ’())) 1
(define twelve (make-tree 12 ’())) / | \
(define ten (make-tree 10 ’())) / | \
(define six (make-tree 6 ’())) 2 12 3
(define seven (make-tree 7 ’())) | / | \
(define two (make-tree 2 (list eight))) 8 6 9 7
(define nine (make-tree 9 (list ten))) |
(define three (make-tree 3 (list six nine seven))) 10
(define one (make-tree 1 (list two twelve three)))

The question continues on the next page.
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This is a large Tree specifically so that you can play with it. In testing your code, you may want to work
with one of the subtrees, such as three or nine.

Write a function fringe that takes a Tree and returns a list of the datums of the leaf nodes, in any order:
STk> (fringe one)
(8 12 6 10 7)
STk> (fringe three)
(6 10 7)
STk> (fringe six)
(6)

Question 3. This question explores a Mobile ADT. A Mobile is like a tree with only two branches at every
node: a right branch and a left branch. From each branch hangs either a weight, which is just a number, or
another Mobile. Here is a constructor:
(define (make-mobile left-branch right-branch)

(list ’mobile left-branch right-branch))

A branch also consists of two parts: a length and a structure. The length of a branch is numeric; the
structure at the end, however, can be either another Mobile or a weight (a number).
(define (make-branch branch-length branch-structure)

(list ’branch branch-length branch-structure))

The following code builds up the Mobile at right (from the bottom up):
O

8 / \ 5
STk> (define mobile-1 (make-mobile (make-branch 4 5) / \

(make-branch 2 10))) O 10
STk> (define mobile-2 (make-mobile (make-branch 3 10) 3 / \ 2

(make-branch 2 mobile-1))) / \
STk> (define mobile-3 (make-mobile (make-branch 8 mobile-2) 10 O

(make-branch 5 10))) 4 / \ 2
/ \

5 10

A. There are four selectors that need to be written. Two are for Mobiles: right-branch and left-branch,
and two are for branches: branch-structure and branch-length. We’ll build a simple error check
into the selectors to ensure they’re applied to the right type:
(define (left-branch mobile)

(if (and (list? mobile) (equal? (car mobile) ’mobile))
(cadr mobile)
(error "Not a mobile -- LEFT-BRANCH: " mobile)))

Write the three remaining selectors analogously. Try them out on mobile-3 above:
STk> (branch-structure (right-branch mobile-3))
10
STk> (branch-length (left-branch (branch-structure (left-branch mobile-3))))
3
STk> (branch-structure

(left-branch
(branch-structure

(right-branch (branch-structure (left-branch mobile-3))))))
5

The learning continues on the next page.
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B. Write a function total-weight which returns the weight of a Mobile. Assume branches are weightless;
hence, only the weights increase the total weight of a Mobile:

STk> (total-weight mobile-1)
15
STk> (total-weight mobile-2)
25
STk> (total-weight mobile-3)
35

Students tend to solve this problem by performing an unnecessarily exhaustive case analysis: is the
left branch a weight? is the right branch a weight? are both of them weights? This approach indicates
that you don’t trust the recursion. You only need one base case and one recursive case! Ask yourself,
what are the “leaves” of a Mobile?

C. A mobile is said to be balanced if the torque applied by its top-left branch is equal to that applied
by its top-right branch, and if all the other mobiles hanging beneath it are themselves balanced. The
“torque applied by a branch” means the product of the branch-length and the total-weight of the
branch-structure. For example, the torque applied by the top-right branch of the mobile (whose
length is 5 and whose structure is the weight 10) is 50. Write a balanced? predicate that takes a
Mobile and returns a true value if it is balanced, #f otherwise:

STk> (balanced? mobile-1)
#t
STk> (balanced? mobile-2)
#t
STk> (balanced? mobile-3)
#f

Aim for the simplest possible base case. You may assume that a weight by itself is always balanced.

Question 4. We can represent a set as a list of distinct, unordered elements. We’d like to find the subsets
of such a set. The subsets of a set S are all the sets that can be formed by selecting any number of the
elements of S. For example:

STk> (subsets ’(1 2 3))
(() (3) (2) (2 3) (1) (1 3) (1 2) (1 2 3))

Notice that the empty set is a subset of every set, and every set is a subset of itself. Complete the following
definition of subsets.

(define (subsets s)
(if (null? s)

(list ’())
(let ((rest (subsets (cdr s))))

(append rest (map ?? rest)))))

Trust the recursion!
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