
CS61A – Homework 5.1 Kurt Meinz
University of California, Berkeley Summer 2003

Topic: Mutation

Lectures: Monday July 21, Tuesday July 22

Reading: Abelson & Sussman, Section 3.3.1–3

This assignment gives you practice with mutation of pairs and circular structures made of pairs. Additionally,
several of problems require an understanding of last week’s material. Question 4, count-pairs, is a classic
problem in computer science. Make sure to spend enough time on it. This homework is due at 8 PM on
Sunday, July 27. Put your answers into a file hw5-1.scm and submit it electronically.

Question 1. This question isn’t so much about how tables work, but about using them. Memoization is
a technique for increasing the efficiency of a program by recording previously computed results in a local
table. The keys are the arguments to the memoized procedure. When the memoized procedure is asked
to compute a value, it first checks the table. If the value has already been computed, just pull it out of
the table. Otherwise, compute the value and store it in the table for future use. (Note that memoization
only benefits procedures that are strictly functional; it would not make sense to memoize random or other
procedures with side-effects.)

A. Here is the familiar procedure for computing Fibonacci numbers:
(define (fib n)

(cond ((= n 0) 1)
((= n 1) 1)
(else (+ (fib (- n 1)) (fib (- n 2))))))

Its order of growth is Θ(2n). Here is a memoized version:
(define memo-fib

(let ((history (make-table)))
(lambda (n)

(let ((previously-computed (lookup n history)))
(or previously-computed

(cond ((= n 0) 1)
((= n 1) 1)
(else

(let ((result (+ (memo-fib (- n 1)) (memo-fib (- n 2)))))
(insert! n result history)
result))))))))

Code for one-dimentional tables is in ~cs61a/lib/tables.scm. To get a rough idea of how much work is
saved, trace both versions and compute the 11th Fibonacci number. Explain why memo-fib computes
the nth Fibonacci number in a number of steps proportional to n. That is, show that memo-fib has
roughly a linear order of growth. Treat lookup and insert! as constant-time operations.

B. Memoize the count-change procedure defined on Page 40 of SICP. Actually, memoize its helper cc.
Model your memo-cc procedure on memo-fib. Notice that cc has a structure that is very similar to
fib: two base cases, one recursive case but with two recursive calls. The only difference is that cc
takes two arguments, amount and kinds-of-coins. While you can use a two-dimentional table to deal
with this, it is probably easier to use a one-dimentional table and list both arguments for the key.
Test your memo-cc against the original cc procedure to make sure it returns the same answer—but
faster! You’ll find the original count-change procedure in ~cs61a/lib/change.scm.

The adventure continues on the next page.

59



Question 2. In this question we look at destructive removal of elements from a proper list.

A. Write the procedure remove-nth! that takes a list and a number n. It should destructively remove
the nth element of the list (counting from zero). The return value of remove-nth! is up to you; it’s
the side-effect we’re after. You may assume that n will be within the length of the list. Additionally,
you may assume that n will never be zero; that is, we’ll never ask remove-nth! to get rid of the very
first list element. The desired behavior is this:

STk> (define red-pill (list ’how ’deep ’the ’rabbit ’hole ’is))
red-pill
STk> (remove-nth! red-pill 1)
ok ;; return value is garbage
STk> red-pill
(how the rabbit hole is)
STk> (remove-nth! red-pill 3)
ok
STk> red-pill
(how the rabbit is)

B. Now the interesting part: why can’t n be zero? Specifically, why is it impossible to write a remove-
nth! function that can remove all the elements of a given list? For example:

STk> (define a (list ’hello))
a
STk> (remove-nth! a 0)
ok
STk> a
()

Assuming you have a working remove-nth! from Part A, why does the following definition of
remove-nth-with-zero!, which attempts to handle the case when n is zero, fail?

(define (remove-nth-with-zero! lst n)
(if (= n 0)

(set! lst (cdr lst))
(remove-nth! lst n))) ;; call remove-nth! if n is nonzero

You may find it useful to draw an environment diagram (or have EnvDraw draw it for you).

Question 3. Write a function interleave! that takes two lists, the first of which is non-empty, and
interleaves their elements using mutation. That is, interleave! should insert an element of the second list
between every two elements of the first list. The return value of interleave! is up to you. Here is a sample
call (with some return values omitted for clarity):

STk> (define numbers (list 1 2 3 4 5))
STk> (define letters (list ’a ’b))
STk> (interleave! numbers letters)
STk> numbers
(1 a 2 b 3 4 5)
STk> letters
(a 2 b 3 4 5)

Test interleave! thoroughly and include your test cases in your submission (but comment them out). Do
not allocate any new pairs! The point of this problem is to reuse existing pairs, not make new ones.
Hence, cons and friends are illegal.

The homework continues on the next page.

60



Question 4. We’d like to write a procedure count-pairs that returns the number of pairs in an arbitrary
structure. The following is a version that would work for any structure of pairs that can be constructed
without mutation:

(define (count-pairs x)
(if (not (pair? x))

0
(+ (count-pairs (car x))

(count-pairs (cdr x))
1)))

Let’s take it out for a spin:

STk> (count-pairs (list ’a ’b ’c))
3
STk> (count-pairs (cons ’a (cons ’b ’c)))
2
STk> (count-pairs (list (list (list (list ’a)) ’b) ’c))
6

Mutation, however, allows us to fool count-pairs into thinking a structure has more pairs than it really
does:

STk> (define test (list ’a ’b ’c)) ;; 3 pairs
test
STk> (set-car! test (cdr test)) ;; still 3 pairs
okay
STk> (count-pairs test)
5

Worse still, count-pairs will go into an infinite loop on circular structures:

STk> (define test (list ’a ’b ’c))
test
STk> (set-car! test test)
okay
STk> (count-pairs test)
doesn’t return

Fix count-pairs so it correctly returns the number of pairs in any structure, circular or not. Do this by
having count-pairs keep track of pairs it has already visited in a local list. (Yes, this means you’ll need to
maintain local state somewhere.) When facing a new pair, check if it is already in the list with memq, which
is is like member but uses eq? to perform comparisons. You will need a helper.

Test the new count-pairs on the nastiest circular structures you can come up with.

61




