CS61A — Homework 7.1 Kurt Meinz
University of California, Berkeley Summer 2003

Topic: Lazy evaluator, Analyzing evaluator, Nondeterministic evaluator
Lectures: Monday August 4, Tuesday August 5
Reading: Abelson & Sussman, Section 4.1.7-4.3.2 (Pages 393-426) skim the parsing stuff
This assignment is an evaluator potpourri, giving you practice with the lazy, analyzing and nondeterministic
evaluators mostly “above the line.”
e “cs6la/lib/analyze.scm — Analyzing evaluator
e “cs6la/lib/lazy.scm — Lazy evaluator
e “cs6la/lib/vambeval.scm — Nondeterministic evaluator

Please put your solutions into a file called hw7-1.scm and submit it online as usual. Include only the code
you wrote and test cases. The assignment is due at 8 PM on Sunday, August 10.

Question 1. In the lazy evaluator actual-value is called in four places: to evaluate the arguments to a
primitive procedure, to evaluate the operator in a procedure application, to print the results in the REPL
and to evaluate the predicate in a conditional. This question investigates what happens when we replace
actual-value with mc-eval in two of these. For each of the following two scenarios, describe what goes
wrong and include a brief session with the lazy evaluator that demonstrates the problem.

A. Suppose we change the application clause to use mc-eval, like this:

((application? exp)

(mc-apply (mc-eval (operator exp) env) ;3 was actual-value
(operands exp)
env))

B. Suppose we change eval-if to use mc-eval, like this:

(define (eval-if exp env)
(if (true? (mc-eval (if-predicate exp) env)) ;; was actual-value
(mc-eval (if-consequent exp) env)
(mc-eval (if-alternative exp) env)))

The adventure continues on the next page.

72



Question 2. This question explores the behavior of procedures with side-effect in the lazy evaluator. For
both parts, type the following definitions into the lazy evaluator first:

(define count 0)

(define (identity x)
(set! count (+ count 1))

x)

A. Fill in the blanks in the following interaction with the lazy evaluator and explain your answers:
;35 L-Eval input:
(define w (identity (identity 10)))
;35 L-Eval input:
count

;33 L-Eval value:

;35 L-Eval input:

;33 L-Eval value:

;55 L-Eval input:
count

;33 L-Eval value:

B. Explain the final value of count in the following interaction when the interpreter uses memoized and
unmemoized thunks. Start count at zero. (By default the lazy evaluator uses memoized thunks because
the memoizing definition of force-it loads after the un-memoizing one.)

;55 L-Eval input:

(define (square x) (* x x))
;55 L-Eval input:

(square (identity 10))

;53 L-Eval value:
100

The fun continues on the next page.

73



Question 3. In the last homework you added do-1ist to the metacircular evaluator. Now add it to the ana-
lyzing evaluator. Again, do not add it as a derived expression. Instead, write a procedure analyze-do-list
that can handle this form. Make sure that the do-1ist body is analyzed only once, since this will result in
a tremendous saving of computation over the MCE version. Remember, the return value of analyze-do-1ist
should be an execution procedure that expects an environment. Here are some isolation tests:

STk> (define-variable! ’count O the-global-environment) ;; we’ll need this in a second

ok

STk> (analyze-do-list ’(do-list (x (list 1 2 3) count)
(set! count (+ 1 count))))

#[closure arglist=(env) 9c62£0] ;; returns execution procedure

STk> ((analyze-do-list ’(do-list (x (1list ’a ’b ’c) count) ;; needs environment to run
(set! count (+ 1 count))))

the-global-environment)
3

Question 4. We’d like to write a nondeterministic program to crack a combination lock. Since there is
only a finite number of combinations, all it takes is time! We will represent locks as message-passing objects
created with the following procedure:

(define (make-lock combination)
(lambda (message combo)
(cond ((eq? message ’try) (if (equal? combo combination) ’open ’nice-try))
(else (error "I don’t understand " message)))))

As you can see, it’s not a very sophisticated lock; it only knows the message try, which comes with one
argument taken to be a test combination. If the test combination matches the real combination, the lock
says open; otherwise it says nice-try.

A. Your task is to write a nondeterministic program code-breaker that takes a lock and returns the
combination that opens it. Assume that a combination is a list of three elements

((left n) (right n) (left n))

where n is between 0 and 20, inclusive, and the directions are exactly as shown: left, right, left. Here
is the desired behavior:

;55 Amb-Eval input:

(define lockl (make-lock ’((left 10) (right 14) (left 3))))

;33 Starting a new problem
;55 Amb-Eval value:
ok

;55 Amb-Eval input:
(code-breaker lockl)

;55 Starting a new problem
;55 Amb-Eval value:
((left 10) (right 14) (left 3))

B. Now let’s remove the left-right-left requirement. Combinations are still three-element lists, but the

directions can be in any order. Each of the following are valid combinations:

((left 3) (left 4) (left 5))
((right 17) (left 4) (left 15))
((right 20) (right 20) (right 20))

Modify your program from Part A to crack these locks.

74





