
CS 61A Lecture Notes First Half of Week 5

Topic: Mutable data, queues, tables

Reading: Abelson & Sussman, Section 3.3.1–3

Play the animal game:

> (load "lectures/3.3/animal.scm")(load "lectures/3.3/animal.scm")(load "lectures/3.3/animal.scm")
#f
> (animal-game)(animal-game)(animal-game)
Does it have wings? nonono
Is it a rabbit? nonono

I give up, what is it? gorillagorillagorilla

Please tell me a question whose answer is YES for a gorilla
and NO for a rabbit.
Enclose the question in quotation marks.
"Does it have long arms?""Does it have long arms?""Does it have long arms?"
"Thanks. Now I know better."
> (animal-game)(animal-game)(animal-game)
Does it have wings? nonono
Does it have long arms? nonono
Is it a rabbit? yesyesyes
"I win!"

The crucial point about this program is that its behavior changes each time it learns about a new animal.
Such learning programs have to modify a data base as they run. We represent the animal game data base
as a tree; we want to be able to splice a new branch into the tree (replacing what used to be a leaf node).

Changing what’s in a data structure is called mutation. Scheme provides primitives set-car! and set-cdr!
for this purpose.

They aren’t special forms! The pair that’s being mutated must be located by computing some expression.
For example, to modify the second element of a list:

(set-car! (cdr lst) ’new-value)

They’re different from set!, which changes the binding of a variable. We use them for different purposes, and
the syntax is different. Still, they are connected in two ways: (1) Both make your program non-functional,
by making a permanent change that can affect later procedure calls. (2) Each can be implemented in terms
of the other; the book shows how to use local state variables to simulate mutable pairs, and later we’ll see
how the Scheme interpreter uses mutable pairs to implement environments, including the use of set! to
change variable values.

The only purpose of mutation is efficiency. In principle we could write the animal game functionally by
recopying the entire data base tree each time, and using the new one as an argument to the next round of
the game. But the saving can be quite substantial.

Identity. Once we have mutation we need a subtler view of the idea of equality. Up to now, we could just
say that two things are equal if they look the same. Now we need two kinds of equality, that old kind plus
a new one: Two things are identical if they are the very same thing, so that mutating one also changes the
other. Example:

> (define a (list ’x ’y ’z))
> (define b (list ’x ’y ’z))

132



> (define c a)
> (equal? b a)
#T
> (eq? b a)
#F
> (equal? c a)
#T
> (eq? c a)
#T

The two lists a and b are equal, because they print the same, but they’re not identical. The lists a and c
are identical; mutating one will change the other:

> (set-car! (cdr a) ’foo)
> a
(X FOO Z)
> b
(X Y Z)
> c
(X FOO Z)

If we use mutation we have to know what shares storage with what. For example, (cdr a) shares storage
with a. (Append a b) shares storage with b but not with a. (Why not? Read the append procedure.)

The Scheme standard says you’re not allowed to mutate quoted constants. That’s why I said (list ’x ’y ’z)
above and not ’(x y z). The text sometimes cheats about this. The reason is that Scheme implementations
are allowed to share storage when the same quoted constant is used twice in your program.

Here’s the animal game:

;;;;; In file cs61a/lectures/3.3/animal.scm
(define (animal node)

(define (type l) (car l))
(define (question l) (cadr l))
(define (yespart l) (caddr l))
(define (nopart l) (cadddr l))
(define (answer l) (cadr l))
(define (leaf? l) (eq? (type l) ’leaf))
(define (branch? l) (eq? (type l) ’branch))
(define (set-yes! node x)

(set-car! (cddr node) x))
(define (set-no! node x)

(set-car! (cdddr node) x))

(define (yorn)
(let ((yn (read)))
(cond ((eq? yn ’yes) #t)

((eq? yn ’no) #f)
(else (display "Please type YES or NO")

(yorn)))))

133



(display (question node))
(display " ")
(let ((yn (yorn)) (correct #f) (newquest #f))

(let ((next (if yn (yespart node) (nopart node))))
(cond ((branch? next) (animal next))

(else (display "Is it a ")
(display (answer next))
(display "? ")
(cond ((yorn) "I win!")

(else (newline)
(display "I give up, what is it? ")
(set! correct (read))
(newline)
(display "Please tell me a question whose answer ")

(display "is YES for a ")
(display correct)
(newline)
(display "and NO for a ")
(display (answer next))
(display ".")
(newline)
(display "Enclose the question in quotation marks.")
(newline)
(set! newquest (read))
(if yn

(set-yes! node (make-branch newquest
(make-leaf correct)
next))

(set-no! node (make-branch newquest
(make-leaf correct)
next)))

"Thanks. Now I know better.")))))))

(define (make-branch q y n)
(list ’branch q y n))

(define (make-leaf a)
(list ’leaf a))

(define animal-list
(make-branch "Does it have wings?"

(make-leaf ’parrot)
(make-leaf ’rabbit)))

(define (animal-game) (animal animal-list))

Things to note: Even though the main structure of the program is sequential and BASIC-like, we haven’t
abandoned data abstraction. We have constructors, selectors, and mutators—a new idea—for the nodes of
the game tree.

134



• Tables. We’re now ready to understand how to implement the put and get procedures that A&S used
at the end of chapter 2. A table is a list of key-value pairs, with an extra element at the front just so that
adding the first entry to the table will be no diffferent from adding later entries. (That is, even in an “empty”
table we have a pair to set-cdr!)

;;;;; In file cs61a/lectures/3.3/table.scm
(define (get key)

(let ((record (assoc key (cdr the-table))))
(if (not record)

#f
(cdr record))))

(define (put key value)
(let ((record (assoc key (cdr the-table))))

(if (not record)
(set-cdr! the-table

(cons (cons key value)
(cdr the-table)))

(set-cdr! record value)))
’ok)

(define the-table (list ’*table*))

Assoc is in the book:

(define (assoc key records)
(cond ((null? records) #f)

((equal? key (caar records)) (car records))
(else (assoc key (cdr records))) ))

In chapter 2, A&S provided a single, global table, but we can generalize this in the usual way by taking an
extra argument for which table to use. That’s how lookup and insert! work.

One little detail that always confuses people is why, in creating two-dimensional tables, we don’t need a
*table* header on each of the subtables. The point is that lookup and insert! don’t pay any attention
to the car of that header pair; all they need is to represent a table by some pair whose cdr points to the
actual list of key-value pairs. In a subtable, the key-value pair from the top-level table plays that role. That
is, the entire subtable is a value of some key-value pair in the main table. What it means to be “the value
of a key-value pair” is to be the cdr of that pair. So we can think of that pair as the header pair for the
subtable.

135



• Memoization. Exercise 3.27 is a pain in the neck because it asks for a very complicated environment
diagram, but it presents an extremely important idea. If we take the simple Fibonacci number program:

;;;;; In file cs61a/lectures/3.3/fib.scm
(define (fib n)

(if (< n 2)
1
(+ (fib (- n 1))

(fib (- n 2)) )))

we recall that it takes Θ(2n) time because it ends up doing a lot of subproblems redundantly. For example,
if we ask for (fib 5) we end up computing (fib 3) twice. We can fix this by remembering the values that
we’ve already computed. The book’s version does it by entering those values into a local table. It may be
simpler to understand this version, using the global get/put:

;;;;; In file cs61a/lectures/3.3/fib.scm
(define (fast-fib n)

(if (< n 2)
n ; base case unchanged
(let ((old (get ’fib n)))

(if (number? old) ; do we already know the answer?
old
(begin ; if not, compute and learn it
(put ’fib n (+ (fast-fib (- n 1))

(fast-fib (- n 2))))
(get ’fib n))))))

Is this functional programming? That’s a more subtle question than it seems. Calling memo-fib makes a
permanent change in the environment, so that a second call to memo-fib with the same argument will carry
out a very different (and much faster) process. But the new process will get the same answer! If we look
inside the box, memo-fib works non-functionally. But if we look only at its input-output behavior, memo-fib
is a function because it always gives the same answer when called with the same argument.

What if we tried to memoize random? It would be a disaster; instead of getting a random number each time,
we’d get the same number repeatedly! Memoization only makes sense if the underlying function really is
functional.

This idea of using a non-functional implementation for something that has functional behavior will be very
useful later in the course when we look at streams.

136




