
CS 61A Lecture Notes Second Half of Week 6

Topic: Lazy evaluator

Reading: Abelson & Sussman, Sections 4.2

To load the lazy metacircular evaluator, say

(load "~cs61a/lib/lazy.scm")

Streams require careful attention

To make streams of pairs, the text uses this procedure:

;;;;; In file cs61a/lectures/4.2/pairs.scm
(define (pairs s t)

(cons-stream
(list (stream-car s) (stream-car t))
(interleave
(stream-map (lambda (x) (list (stream-car s) x))

(stream-cdr t))
(pairs (stream-cdr s) (stream-cdr t)))))

In exercise 3.68, Louis Reasoner suggests this simpler version:

(define (pairs s t)
(interleave
(stream-map (lambda (x) (list (stream-car s) x))

t)
(pairs (stream-cdr s) (stream-cdr t))))

Of course you know because it’s Louis that this doesn’t work. But why not? The answer is that interleave
is an ordinary procedure, so its arguments are evaluated right away, including the recursive call. So there is
an infinite recursion before any pairs are generated. The book’s version uses cons-stream, which is a special
form, and so what looks like a recursive call actually isn’t—at least not right away.

But in principle Louis is right! His procedure does correctly specify what the desired result should contain.
It fails because of a detail in the implementation of streams. In a perfect world, a mathematically correct
program such as Louis’s version ought to work on the computer.

In section 3.5.4 they solve a similar problem by making the stream programmer use explicit delay invocations.
(You skipped over that section because it was about calculus.) Here’s how Louis could use that technique:

(define (interleave-delayed s1 delayed-s2)
(if (stream-null? s1)

(force delayed-s2)
(cons-stream
(stream-car s1)
(interleave-delayed (force delayed-s2)

(delay (stream-cdr s1))))))

(define (pairs s t)
(interleave-delayed
(stream-map (lambda (x) (list (stream-car s) x))

t)
(delay (pairs (stream-cdr s) (stream-cdr t)))))

This works, but it’s far too horrible to contemplate; with this technique, the stream programmer has to

147



check carefully every procedure to see what might need to be delayed explicitly. This defeats the object of
an abstraction. The user should be able to write a stream program just as if it were a list program, without
any idea of how streams are implemented!

Lazy evaluation: delay everything automatically

Back in chapter 1 we learned about normal order evaluation, in which argument subexpressions are not
evaluated before calling a procedure. In effect, when you type

(foo a b c)

in a normal order evaluator, it’s equivalent to typing

(foo (delay a) (delay b) (delay c))

in ordinary (applicative order) Scheme. If every argument is automatically delayed, then Louis’s pairs
procedure will work without adding explicit delays.

Louis’s program had explicit calls to force as well as explicit calls to delay. If we’re going to make this
process automatic, when should we automatically force a promise? The answer is that some primitives need
to know the real values of their arguments, e.g., the arithmetic primitives. And of course when Scheme is
about to print the value of a top-level expression, we need the real value.

How do we modify the evaluator?

What changes must we make to the metacircular evaluator in order to get normal order?

We’ve just said that the point at which we want to automatically delay a computation is when an expression
is used as an argument to a procedure. Where does the ordinary metacircular evaluator evaluate argument
subexpressions? In this excerpt from eval:

(define (eval exp env)
(cond ...

((application? exp)
(apply (eval (operator exp) env)

(list-of-values (operands exp) env)))
...))

It’s list-of-values that recursively calls eval for each argument subexpression. Instead we could make
thunks:

(define (eval exp env)
(cond ...

((application? exp)
(apply (ACTUAL-VALUE (operator exp) env)

(LIST-OF-DELAYED-VALUES (operands exp) env)))
...))

Two things have changed:

1. To find out what procedure to invoke, we use actual-value rather than eval. In the normal order
evaluator, what eval returns may be a promise rather than a final value; actual-value forces the promise
if necessary.

2. Instead of list-of-values we call list-of-delayed-values. The ordinary version uses eval to get the
value of each argument expression; the new version will use delay to make a list of thunks. (This isn’t quite
true, and I’ll fix it in a few paragraphs.)

148



When do we want to force the promises? We do it when calling a primitive procedure. That happens in
apply:

(define (apply procedure arguments)
(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure arguments))
...))

We change it to force the arguments first:

(define (apply procedure arguments)
(cond ((primitive-procedure? procedure)

(apply-primitive-procedure procedure (MAP FORCE ARGUMENTS)))
...))

Those are the crucial changes. The book gives a few more details: Some special forms must force their
arguments, and the read-eval-print loop must force the value it’s about to print.

Reinventing delay and force

I said earlier that I was lying about using delay to make thunks. The metacircular evaluator can’t use
Scheme’s built-in delay because that would make a thunk in the underlying Scheme environment, and we
want a thunk in the metacircular environment. (This is one more example of the idea of level confusion.)
Instead, the book uses procedures delay-it and force-it to implement metacircular thunks.

What’s a thunk? It’s an expression and an environment in which we should later evaluate it. So we make
one by combining an expression with an environment:

(define (delay-it exp env)
(list ’thunk exp env))

The rest of the implementation is straightforward.

Notice that the delay-it procedure takes an environment as argument; this is because it’s part of the
implementation of the language, not a user-visible feature. If, instead of a lazy evaluator, we wanted to add
a delay special form to the ordinary metacircular evaluator, we’d do it by adding this clause to eval:

((delay? exp) (delay-it (cadr exp) env))

Here exp represents an expression like (delay foo) and so its cadr is the thing we really want to delay.

The book’s version of eval and apply in the lazy evaluator is a little different from what I’ve shown here.
My version makes thunks in eval and passes them to apply. The book’s version has eval pass the argument
expressions to apply, without either evaluating or thunking them, and also passes the current environment
as a third argument. Then apply either evaluates the arguments (for primitives) or thunks them (for non-
primitives). Their way is more efficient, but I think this way makes the issues clearer because it’s more
nearly parallel to the division of labor between eval and apply in the vanilla metacircular evaluator.

Memoization

Why didn’t we choose normal order evaluation for Scheme in the first place? One reason is that it easily
leads to redundant computations. When we talked about it in chapter 1, I gave this example:

(define (square x) (* x x))

(square (square (+ 2 3)))

In a normal order evaluator, this adds 2 to 3 four times!

(square (square (+ 2 3))) ==>

149



(* (square (+ 2 3)) (square (+ 2 3))) ==>
(* (* (+ 2 3) (+ 2 3)) (* (+ 2 3) (+ 2 3)))

The solution is memoization. If we force the same thunk more than once, the thunk should remember its
value from the first time and not have to repeat the computation. (The four instances of (+ 2 3) in the
last line above are all the same thunk forced four times, not four separate thunks.)

The details are straightforward; you can read them in the text.

150




