
University of California, Berkeley – College of Engineering
Department of Electrical Engineering and Computer Sciences

Summer 2002 Instructor: Kurt Meinz 2002-07-12

CS 61A Midterm #1

Personal Information

First and Last Name

 Your Login cs61a-__ __

Logins of Group Members cs61a-__ __ cs61a-__ __ cs61a-__ __

Lab Section Time & Location you attend

Discussion Section Time & Location you attend

“All the work is my own. I had no prior knowledge of
the exam contents nor will I share the contents with

others in CS61a who have not taken it yet.”

 (please sign)

Instructions
• Partial credit may be given for incomplete /

wrong answers, so please write down as much
of the solution as you can.

• Feel free to use any Scheme function that was

described in lecture or sections of the textbook
we have read without defining it yourself. Do
not use functions or constructs that we have
not yet covered. Unless specifically
prohibited, you are allowed to use helper
functions on any problem.

• Please use “true” instead of #t , and “false”

instead of #f. We have found that handwritten
#t and #f unfortunately look too much alike.

• Please write legibly! If we can’t read it, we

won’t grade it!

Grading Results

Question
Max.
Points

Points
Earned

1 5

2 5

3 5

4 5

5 5

6 5

7 5

8 5

Total 40

Name: __________________________ Login: ____________________

Question 1: Applicative and Normal Order [4 Points]

Part a:

Consider this function:

(define (greg x y z)
 (z (* x y)))

How many times is the ‘*’ procedure invoked when

(greg 3 (* 2 2) (lambda (x) (* x x x)))

is evaluated in normal order? __________________

How many in applicative order? __________________

Part b:

Consider this expression:

(let ((a (* 2 3)) (b (* 6 7)))
 (if (= a b)
 (* a b)
 b))

How many times is ‘*’ invoked if the order of evaluation is
applicative?

How many if the order is normal? _____________________

Page 2 of 9

Name: _________________________ Login:________________________

Question 2: Functions [4 Points]

Consider the following function:

(define (jeffified? a b c)
 (cond ((equal? a b) #t)
 ((pair? c) #t)
 ((odd? (+ a b c)) (if (equal? (- a b) –2)
 #t
 #f))
 (else #f)))

Please re-write the function so that it has the same behavior but
does not use ‘cond’ or ‘if’. You may not use helper functions,
but you are encouraged to use the logical functions ‘and’, ‘or’,
and ‘not’.

Page 3 of 9

Name: _________________________ Login:________________________

Question 3: Recursion [4 Points]

Write a procedure named ‘running-total’ that takes a non-empty
sentence of numbers as an argument and returns another sentence
that contains the running total.

In other words,
O The first number in the resulting sentence should be the first
number of the argument sentence,
O The second number in the resulting sentence should be the sum
of the first and second numbers of the original sentence,
O The third number in the resulting sentence should be the sum of
the first, second, and third numbers of the original sentence,
and so on.

For example:
> (running-total ‘(1 2 3 4))
(1 3 6 10)
> (running-total ‘(-5 0 –22 18 55))
(-5 –5 –27 –9 46)

Page 4 of 9

Name: _________________________ Login:________________________

Question 4: Let [4 Points]

Consider the following snippet of scheme code:

(let ((x 3) (y 4))
 (let ((x 5) (y (+ x 3)))
 (let ((x (+ x 7)))
 (+ x y))))

Part a:

What is the return value of the expression? If you think it is an
error, write ‘error’ and give a concise description of the cause
of the error.

Part b:

Re-write the snippet by replacing all of the let expressions with
their lambda equivalents.

Page 5 of 9

Name: _________________________ Login:________________________

Question 5: Lists [4 Points]

Erwin wanted to implement the ‘list?’ predicate. Here is his
first attempt:

(define (erwins-list? l)
 (or (null? l)
 (erwins-list? (cdr l))))

Jane thinks that this procedure will fail if someone tries to
evaluate the following:

(erwins-list? (cons 3 (cons 4 5)))

Part a:

Is Jane correct? _______

If yes, why? If no, why not? (Be concise!)

Part b:

Fix Erwin’s procedure in the space provided below. We are looking
for the smallest and simplest possible change such that the
procedure will work for any input whatsoever.

Page 6 of 9

Name: _________________________ Login:________________________

Question 6: Higher Order Procs [5 Points]

Question 2.6 of SICP (page 93) makes reference to the idea of
implementing numbers using lambdas – much like we implemented
paris via lectures in lecture. Consider the following
implementation of ‘kurt-numerals’:

(define zero (lambda (x) x))

(define (add-one kurt-num)
 (lambda (x) kurt-num))

Part a:

As specifically as possible describe in English the object that
is the return value of this expression:

(add-one zero)

Part b:

Please write a procedure named ‘show-kurt-val’ that takes a
(well-defined) kurt-numeral as an argument and returns the number
that that kurt-numeral corresponds to.

For example:

> (show-kurt-val (add-one (add-one (add-one zero)))
3

Page 7 of 9

Name: _________________________ Login:________________________

Question 7: Abstraction [5 Points]

Consider these six mystery functions:

(define (func-1 x) func-1:___________________
 (x ‘false))

(define (func-2 x) func-2:___________________
 (not x))

(define (func-3 x) func-3:___________________
 (x #f)

(define (func-4 p q) func-4:___________________
 (lambda (y)
 (if y q p)))

(define (func-5 x y) func-5:__________________
 (if y
 (func-4
 (x (func-3 y))
 (func-5 x (func-1 y)))
 #f))

(define (func-6 x y) func-6:___________________
 (cond ((func-2 y) #f)
 ((x (func-3 y))
 (func-4 (func-3 y) (func-6 x (func-1 y))))
 (else
 (func-6 x (func-1 y)))))

Part a:

When taken together, these six functions constitute a partial
implementation of a datatype that we have used in this class.

What is this datatype? _____________________________________

Part b:

Please label each mystery function with the name that we usually
use for it. For example, if you think that func-5 is an
implementation of ‘sentence’, then write ‘sentence’ on the line
next to func-5.

Page 8 of 9

Name: _________________________ Login:________________________

Question 8: Orders of Growth [5 Points]

Give Big-Theta bounds for the time complexity of the following
procedures as a function of the input size. You may assume that
‘foo’ is a globally-defined procedure that runs in Big-Theta(n)
time.

Part a:

(define (ilya n) Big-Theta()
 (if (< n 100000)
 34
 (ilya (- n 1))))

Part b:

(define (ilya n) Big-Theta()
 (if (< n 100000)
 34
 (+ (foo (- n 1))
 (foo (- n 2))
 (foo (- n 3)))))

Part c:

(define (ilya n) Big-Theta()
 (if (< n 100000)
 34
 (+ (ilya (- n 1))
 (ilya (- n 2))
 (ilya (- n 3)))))

Part d:

(define (ilya n) Big-Theta()
 (if (< n 100000)
 34
 (+ (foo (- n 1))
 (foo (- n 2))
 (ilya (- n 3)))))

Page 9 of 9

	University of California, Berkeley – College of E
	CS 61A Midterm #1
	Instructions
	Grading Results
	Question 1: Applicative and Normal Order [4 Points]
	
	Question 2: Functions [4 Points]
	Question 3: Recursion [4 Points]
	Question 4: Let [4 Points]
	Question 6: Higher Order Procs [5 Points]
	Question 7: Abstraction [5 Points]
	Question 8: Orders of Growth [5 Points]

