
CS61A Project 4, Part II: The Interpreter

Chapter 4 of Structure and Interpretation of Computer Programs presents a Scheme interpreter written in
Scheme, the metacircular evaluator. In this project, you will write an interpreter for a different programming
language, Logo, in Scheme. You will need to write a good deal of code for this project, because very little
code is given to you. However, you do have a working Scheme interpreter to use as a reference and to borrow
code from as you see fit.

To see a working Logo interpreter, run Berkeley Logo by typing logo at the shell:

% logo

? Welcome to Berkeley Logo version 2.0

Our interpreter will differ from Berkeley Logo in several ways:

• Berkeley Logo allows you to use +, -, *, /, <, > and = as infix operators. In our Logo interpreter all
functions will be invoked in prefix form.

• In Berkeley Logo, you can use parentheses to allow functions like sum and sentence to take an arbitrary
number of arguments. In our Logo interpreter, parentheses shall be completely meaningless, and all
functions take a fixed number of arguments.

• Berkeley Logo prints error messages in a casual way, without even telling you it’s a bona-fide error
(probably to avoid scaring little kids to death):

? 3

You don’t say what to do with 3

Ours will officially announce errors:

? 3

*** Error: You don’t say what to do with 3

The actual content of the error messages you create does not have to match those of Berkeley Logo,
or those you shown here.

• Berkeley Logo has many more features than will our interpreter. For example, it allows for a funny
form of higher-order functions with map and things called templates that have question marks in them.
For example:

? print map [product ? ?] [1 2 3]

1 4 9

Our interpreter will have these features.

• Berkeley Logo allows a single Logo expression to stretch for several lines, by putting a ˜ at the end of
each continuing line. For example (from Lab 7.1):

? print ifelse 2=1+1 ~

[second [your mother should know]] ~

[first "help]

In our interpreter, a function call must fit on a single line. That is, all arguments to a function
must be on the same line as the function itself. So the above would be:

? print ifelse 2=1+1 [second [your mother should know]] [first "help]

It is not too difficult to fix this, but we’re not asking you to.

1



Although you should model your interpreter on Berkeley Logo, the specifications here trump the behavior
of Berkeley Logo.

It is important that you understand that this is your Logo interpreter. There is no right or wrong way to
build it; if it works it works. There is no “wrong answer.” You do not need to use any of the code already
provided; you do not need to name functions you write in any standard way; go ahead and do your own
thing, if you want to. Just make sure that it behaves as specified here.

This monster of a project description is organized as follows:

Section 1: An introduction to Logo, hinting slightly at implementation aspects.

Section 2: General notes about your implementation, as well as explanation of the code already
provided.

Section 3: Detailed instructions, hints, and requirements, following roughly the project outline on
Page 13.

1 Scheme vs. Logo

Although Logo is a dialect of Lisp, just like Scheme, it is a more distant dialect. There are several profound
differences between Logo and Scheme.

1.1 Syntax

Logo code was never meant to look like a list; you won’t see zillions of nested parentheses in Logo source.
In Scheme, the parentheses served to group the operator with its operands. You could easily tell how many
arguments a procedure is given by determining the length of the list that represents its invocation. For
example, consider the following Scheme expression:

(foo 2 (bar 3 4) 7)

It is immediately clear that the procedure bar is given two arguments, 3 and 4, and foo is given three
arguments, 2, (bar 3 4) and 7.

Contrast this with the following Logo expression:

foo 2 bar 3 4 7

Like Scheme, Logo uses prefix notation for procedure calls: operator, arg1, arg2, arg3, etc. However, the
expression above might correspond to any of the following Scheme expressions:

(foo 2 (bar 3 4 7))

(foo 2 (bar 3 4) 7)

(foo 2 (bar 3) 4 7)

(foo 2 (bar) 3 4 7).

Even worse, foo 2 and bar 3 4 7 might be two distinct Logo expressions, corresponding to the sequence
of Scheme expressions (begin (foo 2) (bar 3 4 7)). This ambiguity is resolved by having each Logo
procedure know the number of arguments it takes. For example, if we know that foo takes two arguments

2



and bar takes three, then the equivalent Scheme expression can only be (foo 2 (bar 3 4 7)). On the
other hand, if we knew that both foo and bar take two arguments, then the Logo interpreter should signal
an error since it won’t know what to do with the 7 on the end.

As another example, consider:

print word sum first 27 27 word "two word "- "nine

The interpreter figures out which arguments belong to what procedure by looking at the line from left to
right.

print takes one argument: print word sum first 27 27 word "two word "- "nine

word takes two arguments: word sum first 27 27 word "two word "- "nine

sum takes two arguments: sum first 27 27

and and so does word: word "two word "- "nine

So equivalent Scheme expression would be:

(print (word (sum (first 27) 27) (word ’two (word ’- ’nine))))

Very early in the project you will need to implement this argument-gathering mechanism. That is, you will
know how many arguments a given procedure takes, and it will be your job to collect them. Our Logo
interpreter will not handle procedures that take a varying number of arguments.

Another thing to remember is that there can be any number of unrelated Logo expressions on one line:

? print [hello] print [there] make "a "aye

hello

there

? print :a print :a print :a print :a ;; :a means lookup value of a

aye

aye

aye

aye

To get the same effect in Scheme, you’d need to enclose all the Scheme expressions with begin, as in:

(begin (print ’(hello)) (print ’(there)) (define a ’aye))

In Logo you just put them on the same line. We have provided the function logo-eval-line to handle
this. It’s not very complicated. It just keeps calling logo-eval to “eat up” Logo expressions until the line
becomes empty or an error is encountered.

1.1.1 Procedures vs. variables

Going back to the example of foo 2 bar 3 4 7, you may have noticed that we immediately assumed foo

and bar were procedure calls. What about variables? In Logo, any symbol that does not begin with a colon
is taken to be a procedure call:

? print [the matrix has you]

the matrix has you

? prant [knock knock]

*** Error: I don’t know how to prant

3



And if the symbol, like prant above, does not correspond to the name of a procedure the “I don’t know how
to” error is reported. Logo variables are distinguished from procedure calls by prefixing their name with a
colon. Hence, :foo is a variable, and foo is a procedure call:

? make "foo [oh my god] ;; create a variable "foo"

? to foo ;; create procedure of the same name

-> output [holy cow]

-> end

foo defined

? print :foo ;; lookup the value of the variable "foo" and print it

oh my god

? print foo ;; call procedure "foo" and print its return value

holy cow

This leads to the conclusion that in Logo a procedure named x can coexist with a variable named x. In
Scheme this is impossible since procedures are variables. Think about how many times you named a formal
parameter lst or wd to avoid loosing the list or word functions, respectively! More on this later.

If a variable is unbound, Berkeley Logo prints the “has no meaning” error message. You can have a lot of
fun with this:

? :time

time has no meaning

? :love ;; variable!

love has no meaning

? love ;; procedure call!

I don’t know how to love

Feel free to keep or modify these error messages for your interpreter.

1.1.2 Infix operators

The last piece of syntax that will be unfamiliar to the Scheme programmer is infix operators. In real Logo,
the seven functions +, -, *, /, <, > and = are placed between their two arguments:

? print 2 > 17

false

? print 2 + 5 * 6 - 4 ;; note precedence

28

The Logo interpreter we are building will not handle infix operators. All function calls must be
in prefix form. This means more typing for the user. To compute the same things as above you’d say:

? print greaterp 2 17

false

? print sum 2 difference product 5 6 4

28

But having just prefix operators simplifies the interpreter a good deal.

1.2 First-Class Procedures

In Logo procedures are not first-class data. You cannot pass Logo procedures as arguments to other Logo
procedures, return procedures or store procedures in aggregates. In Scheme, procedures are just variables

4



that happen to be bound to the results of lambda expressions. In Logo, procedures are beasts of a different
nature. In fact, Logo procedures and variables are stored in separate name spaces. Like Scheme variables,
Logo variables are stored in environments. Logo procedures, however, are stored in a single global data
structure (one that you’ll have to implement).

Since there is no lambda equivalent in Logo, there are no anonymous procedures. All Logo procedures have
names. The primitive procedures have their names built in. User-defined procedures are created and named
using the to special form, the only special form in Logo (see below):

? to factorial :n

-> if equalp :n 0 [output 1]

-> output product :n factorial difference :n 1

-> end

factorial defined

? factorial 5

120

When a procedure is created with to, its name and the number of arguments it takes (just one in the case
of factorial) are set, and the procedure is entered into some global data structure. Implementing to will
be an important part of this project, since it will allow you to define your own procedures.

1.3 Dynamic Scope

A more profound difference between Scheme and Logo is that Logo uses dynamic scope whereas Scheme
uses lexical—also known as static—scope. Under lexical scope, compound procedure calls are handled by
extending “the environment to which the procedure points” on an environment diagram. This is implemented
in the metacircular evaluator by having every compound procedure carry with it the environment in which
it was created. It is this environment that is extended when the procedure is called. That’s why there is a
procedure-environment selector in the MCE. Hence, regardless of what the current environment is, calling
some procedure foo always extends the environment to which foo points. This means that any given call to
foo has access to the same, unchanging set of local variables. That’s why they call it static scope!

Under dynamic scope, compound procedure calls are handled by extending the current environment, whatever
it may be. Another way to think of it is that each procedure call extends the environment from which it was
invoked, the “calling” environment. Consider the following Logo procedure:

to foo :a :b :c

print bar

end

Note the call to bar in the body of foo; bar takes zero arguments. When the Logo interpreter gets to this
invocation of bar it will extend the environment of foo. That is, it will extend the environment where the
arguments to foo are bound. The body of bar will be evaluated in an environment containing bindings of
a, b and c. The following are all valid definitions of bar:

to bar

output :a

end

to bar

output sum :a quotient :b :c

end

to bar

output ifelse equalp :a :b [[a and b are the same]] [[a and b are not the same]]

5



end

When called from within the body of foo, bar will have access to three local variables: a, b and c. Of
course, you can also invoke bar from other environments, such as the global environment. In this case, the
new frame will extend the global environment and bar will see a different set of local variables (namely, no
local variables at all). Thus, the scope of bar changes with the current environment—it is dynamic.

Here is another example of dynamic scope:

? make "prefix "sub

? to attach.prefix :word

-> output word :prefix :word

-> end

attach.prefix defined

? print attach.prefix "marine

submarine

? to prefixify :sent :prefix

-> if emptyp :sent [output []]

-> output sentence attach.prefix first :sent prefixify butfirst :sent :prefix

-> end

prefixify defined

? print prefixify [do make cork] "un

undo unmake uncork

Note that the attach.prefix function gets the value of the variable prefix from the current environment,
not the environment in which it was created.

Here is Scheme version:

STk> (define prefix ’sub)

STk> (define (attach-prefix wd)

(word wd prefix))

STk> (attach-prefix ’marine)

submarine

STk> (define (prefixify sent prefix)

(if (empty? sent)

’()

(sentence (attach-prefix (first sent) (prefixify (butfirst sent) prefix)))))

STk> (prefixify ’(do make cork) ’un)

(subdo submake subcork)

Make sure you understand why the results are different, since you won’t be able to implement
dynamic scope if you don’t get it.

Part of the project will be to write logo-apply, the function that applies both primitive and compound Logo
procedures. Just like the apply procedure in the metacircular evaluator, logo-apply should do different
things for primitive and compound procedures. Primitive procedures should be applied in underlying Scheme,
just like in the MCE. The application of compound procedures must follow the rules of dynamic scope.

1.4 Operators and Commands

In Scheme, every function returns a value, even if it is not a very useful one. For example, the return value
of define on STk is the name of the variable that was created:

6



STk> (first (define (square x) (* x x)))

s

We use define only for its side-effect, the creation of a variable. Its return value is garbage. Same with
display. We use it to print stuff, not for the okay it returns:

STk> (display "There is no spoon.\n")
There is no spoon. ;; side-effect

okay ;; return value

According to the Scheme standard, the formal document that defines the Scheme programming language,
the return values of procedures like define, display, newline and set!, which are used only for their side
effects, are “unspecified.” This means that different Scheme interpreters may return different values from
these procedures. The programmer is never intended to use them!

Although the presence of the garbage return values may be a slight annoyance to the Scheme programmer,
it is a boon for the implementer! Not having to distinguish between procedures that return something and
procedures that do not makes a Scheme interpreter, like the MCE, easier to write.

Logo does make this distinction. In Logo, procedures that return useful values are called operators. Examples
would be sum, word and numberp. The other class of procedures, the ones used solely for their side-effects,
are called commands. Logo commands include print, make and to. And commands really do return nothing:

? make "pi 3.14

? ;; no return value printed!

Well, to be more precise, Logo gives the user the impression that commands returned nothing: nothing is
printed by the main loop, and using print, to or make as subexpressions causes an error. For example:

? first print "hello

hello

*** Error: print did not output to first

Notice that the argument to first was evaluated. This is why “hello” was printed (print also prints a
newline). But afterwards the interpreter realized that we were trying to make use of the return value of
print and complained.

Since the Logo interpreter will be written in Scheme, you will need to return some object that shall represent
the lack of a return value in the Logo world. In fact, the file “logo.scm” already contains a definition of this
object:

(define void (cons ’no ’value))

The reason void is a pair is to allow us to test for it using eq?; nothing except void can possibly be eq? to
it. The predicate that checks for void also is given:

(define (void? x) (eq? x void))

The driver-loop of the interpreter, which we have provided, is already set up to not print void:

(define (driver-loop)

(display "? ")

(flush) ;; makes sure ? is printed (unbuffers output)

(let ((line (logo-read)))

(cond ((null? line) (driver-loop))

((equal? line ’(bye))

(display "Thank you for using Logo.\n"))

7



(else

(call/cc (lambda (cont) ;; this is explained later

(set! back-to-driver cont)

(let ((result (logo-eval-line (make-line-obj line) logo-global-environment)))

(if (not (void? result))

(logo-error "You did not say what to do with " result)))))

(newline)

(driver-loop)))))

Actually, the driver-loop complains if it gets anything other than void as a return value. This is because,
as you may have already realized by playing with Logo, every line of Logo code that is evaluated at the
prompt must result in void or you get the “you don’t say what to do with” error. Whereas Scheme will
always print the return value of any expression typed at the prompt...

STk> (+ 5 5)

10

... Logo will never print it. Instead, it will complain that you did not explicitly say to print it (or use it in
make, or some other command):

? sum 5 5

*** Error: You did not say what to do with 10

Whereas Scheme has a read-eval-print loop, Logo has only a read-eval loop, without the print. If you want
something printed, you have to say so explicitly:

? print sum 5 5

10

Similarly, if you want something returned, you have to say so. Scheme always returns the value of the last
expression in a procedure body. You don’t need to tell Scheme to do this; it happens automatically.

STk> (define (square x)

(* x x))

STk> (square 5)

25

A similar definition of square will not work in Logo:

? to square :x

-> product :x :x

-> end

square defined

? square 5

*** Error: You did not say what to do with 25 in square

There are two things you can do with 25. You can print it, making square a command:

? to square :x

-> print product :x :x

-> end

square defined

? square 5

25

Or, you can return it with output, making square an operator (in which case you need to print the return
value of the square explicitly):

8



? to square :x

-> output product :x :x

-> end

square defined

? print square 5

25

1.4.1 Output

Just like you have to “tell” Logo to print a value, you have to “tell” logo to return it as well. That’s where
output comes in. Here is how you would define a recursive function in Logo that makes use of the return
value of the recursive call:

? to factorial :n

-> if equalp :n 0 [output 1]

-> output product :n factorial difference :n 1

-> end

factorial defined

? print factorial 5

120

Since factorial is an operator—it returns a number—we must use output in the recursive case as well as
the base case, otherwise Logo will not know what to do with the value returned by the recursive call.

When a call to output is evaluated, evaluation of the rest of the procedure body stops. Hence, when n is
zero, output 1 is evaluated causing 1 to be returned, and causing the recursive call to not be evaluated. As
another example, consider this operator:

? to play.with.output

-> print [before output]

-> print [still before output]

-> output "foo

-> print [after output]

-> foo bar baz

-> sum "not.a.number 15

-> end

play.with.output defined

? print play.with.output

before output

still before output

foo

As you can see, the instant we hit the call to output, evaluation of the rest of the procedure body is aborted.
Although play.with.output prints stuff, it is still considered an operator because it returns a value. As
with all operators, you better say what you want to do with it:

? play.with.output

before output

still before output

***Error: You did not say what to do with foo

It may surprise you to learn that output is not a special form (see the following section). It is just a primitive
procedure that takes one argument. Part of your task will be to implement output.

9



1.4.2 Stop

As we have seen, output must be used in the base cases of Logo operators to stop the computation. What
about Logo commands? For example, say we want to define a command count-down that prints the numbers
from n to 1:

? to count.down :n

-> if equalp :n 0 [print "blastoff]

-> print :n count.down difference :n 1

-> end

count.down defined

? count.down 3

3

2

1

blastoff

-1

-2

-3

-4

-5

...

Why did it go into an infinite loop? Because saying print "blastoff does not terminate the program like
output does; it just prints “blastoff.” One way to fix this problem is to re-structure count.down and use
ifelse instead of if:

to count.down :n

ifelse equalp :n 0 [print "blastoff] [print :n count.down difference :n 1]

end

But this can become unweieldly because, in our interpreter, all inputs to ifelse must be on the same line.
(In Berkeley Logo, you can create Logo expressions that span multiple lines by placing a ˜ at the end of each
continuing line.)

There is another solution. You can use the built-in function stop, which takes no arguments. Like output,
the job of stop is to halt further computation. But stop does this without returning anything (well, it
returns void). Here is a working version of count.down that uses it:

to count.down :n

if equalp :n 0 [print "blastoff stop] ;; like (begin (print ’blastoff) (stop))

print :n count.down difference :n 1

end

You will need to make stop work in your Logo interpreter.

1.5 Special Forms

One of the design principles of Logo was to minimize the number of special forms in the language. This is
a worthy goal because they introduce “special cases” in the evaluation rules, complicating the interpreter.
While STk bends over backwards to make special forms behave like first-class data (it’s pretty easy to
break—try mapping if), the metacircular evaluator gives a truer picture of the limitations of special forms.
In the MCE, special forms are not variables bound to procedures; they cannot be passed as arguments to
functions nor returned as the results of functions. This is the cost of deviating from the standard evaluation

10



rules.

The funny thing is that Logo does not have first-class procedures anyway, so having if, ifelse and make as
ordinary procedures does not provide any additional expressive power to the language. However, minimizing
the number of special forms does simplify the interpreter. The following is the code for logo-eval, which is
analogous to mc-eval in the metacircular evaluator:

(define (logo-eval line-obj env)

(let ((token (ask line-obj ’next-token)))

(cond ((self-evaluating? token) token)

((variable? token)

(lookup-variable-value (variable-name token) env))

((quoted? token) (text-of-quotation token))

((to? token) (eval-to line-obj))

(else

;; handle procedure application

;; FILL IN

As in the MCE, the code first checks for self-evaluating expressions, quoted expressions and variables. The
else is the procedure-application clause. Between the quoted? clause and the else clause are all the special
forms—in Logo, there is just one: to, the special form that defines procedures. You may not add any

other special forms to your interpreter.

But wait a second, don’t if and friends have to be special forms? How do you keep their arguments from
being evaluated? You quote them! There are two ways to quote expressions in Logo. To quote a word, use
a single double quote, as in:

? print "cs61a

cs61a

Don’t confuse these with the string type you have seen in Scheme. Scheme strings like "Happy Birthday!"

are delimited by matching double quotes. In Logo, there are no strings, and the double quote when used
on words serves the same function as Scheme’s single quote. To quote a list in Logo, enclose it in square
brackets:

? print [cs61a is cool]

cs61a is cool ;; lists are printed without outermost brackets

This is analogous to saying ’(cs61a is cool) in Scheme.

How does this turn special forms into regular procedures? In Logo, you just quote the arguments that in
Scheme would be unevaluated. Take make, which is define and set! rolled into one. In Scheme, the first
argument to define and set! is the name of the variable and is not evaluated. To get the same effect in
Logo, quote it:

? make "pi 3.14

? print :pi

3.14

Quoting the first argument to make means that evaluating it yields the symbol pi, which is exactly what we
want. The second argument to make is, of course, evaluated also. This means that variable names can be
the results of arbitrarily complicated Logo expressions:

? make first [the matrix has you] "foo

? print :the

foo

? make :the "bar

11



? print :foo

bar

The Logo functions if and ifelse use a similar trick. But instead of words, they’re given lists that look
like Logo code:

? ifelse equalp 2 3 [print [2 is equal to 3]] [print [2 is not equal to 3]]

2 is not equal to 3

The expression [print [2 is not equal to 3]] is a list of two elements, the first is the word print

and the second is the list [2 is not equal to 3]; ifelse executes this list as Logo code when the first
argument to it is the word false (as in this case).

Here is another example using if instead of ifelse:

? if "false [print [la la la la]]

?

Nothing was printed because the first argument was the word false. Was [print [la la la la]] evalu-
ated? Sure it was! It is a quoted list, so it evaluates to itself:

? [print [la la la la]]

*** Error: you did not say what to do with [print [la la la la]]

? print first [print [la la la la]]

print

Remember, [print [la la la la]] in Logo means the same as ’(print (la la la la)) in Scheme.

There is one more primitive procedure in Logo that is worth knowing about, run. This function, like if and
ifelse takes a list that looks like Logo code and evaluates it:

? run [print "wassup print "dog]

wassup

dog

The results of saying run expr are the same as typing expr at the prompt directly:

? print "wassup print "dog

wassup

dog

With run, we can write our own ifelse procedure that is identical to the one that is built-in:

to my.ifelse :pred :consequent :alternative

ifelse :pred [run :consequent] [run :alternative]

end

Unlike the my-ifwe wrote in Homework 1.1 in Scheme, my.ifelseworks just fine with recursive procedures—
as long as the last two arguments to it are lists of Logo code.

Having what we’d think of as special forms be regular procedures (they don’t even need to be primitive
procedures—we can make our own, as with my.ifelse above) means that logo-eval becomes a pretty
straightforward procedure. However, there is still a small complication. Procedures like make, if, ifelse
and run need access to the current environment; make needs it so it can create or change variable bindings,
and the other three need it when it comes time for them to evaluate the Logo-code-in-a-list. You will need
to design a mechanism to pass the current environment to these procedures. An easy way to do this is to
give all primitive procedures access to the current environment; regular procedures like sum and print can
just ignore it.

12



2 The Project

Before starting the interpreter, write the Logo program numspell. Details are on the Web site. Put your
work into a file numspell.lg and submit it along with your interpreter.

The file ~cs61a/lib/logo.scm contains the start of a Logo interpreter. Add your code to this file. You will
need to implement the following, roughly in the order shown:

I Primitive Procedures

a. Design representation of primitive procedures

b. Decide on a structure to hold them

c. Add certain primitive procedures to the Logo interpreter

d. Implement an argument-gathering mechanism for procedures

e. Write the part of logo-apply that handles primitive procedure applications.

II Variables

a. Choose a representation for environments

b. Write lookup-variable-value

c. Implement the Logo procedure make

III Compound Procedures

a. Choose a representation for compound procedures

b. Design a way to store them (may or may not be together with primitive procedures)

c. Implement the Logo special form to

d. Implement a way of extending environments

e. Implement dynamic scope in logo-apply

f. Implement eval-sequence, handle stop and output

IV Extra Features

a. Implement the Logo procedure local

b. Add a read function to Logo

The rest of this document describes in more detail the requirements of each step in the outline above, and
gives some tips for their implementation. The order of the outline is followed. But before we do that, we
need to discuss three general aspects of this project that will affect the interpreter as a whole.

2.1 Error Handling

As you have no doubt noticed, the metacircular evaluator does not handle errors at all. Any error—such as
an unbound variable, a division by zero or an application of a non-procedure—crashes the entire program
causing control to return to STk. While ignoring error handling simplifies the interpreter a good deal, it
makes it a pain to use. Production quality interpreters such as STk or Berkeley Logo do not crash when the
programmer mistypes an identifier.

The Logo interpreter you are building must be bulletproof. That is, it must recover from all errors (except
infinite loops). Nothing except bye typed at the Logo prompt should cause control to return to STk. Each
of the stages in the above project outline introduces a new set of error situations. We will point out most of

13



them, and you will need to catch them and recover from them. By “recover from them” we mean print an
error message and return to the main loop. We have provided a procedure logo-error that does exactly this.
This procedure takes any number of arguments and forms them into an error message that is printed, then
returns to the driver-loop. Therefore, when you detect that an error has occurred—the arguments to sum

were not numeric, a variable was not found in the environment, a procedure was not given the right number
of arguments—you need only call logo-error with a helpful message, and it does the rest. The logo-error
procedure is to Logo what the error procedure is to Scheme: a way to abort the current evaluation and
return control to the main loop of the interpreter (print the prompt and continue reading input).

You do not need to understand how logo-error works, just how to use it. The code that makes it
work is in the driver-loop:

(define (driver-loop)

(display "? ")

(flush)

(let ((line (logo-read)))

(cond ((null? line) (driver-loop))

((equal? line ’(bye))

(display "Thank you for using Logo.\n"))

(else

(call/cc (lambda (cont) ;; code that makes LOGO-ERROR

(set! back-to-driver cont) ;; work on these lines

(let ((result (logo-eval-line (make-line-obj line)))))))))))

do stuff with result ...

Make sure not to modify the lines commented above since you might break logo-error. If you would like
to understand how logo-error works, you can read up on Scheme continuations. Google for call-with-

current-continuation, abbreviated as call/cc.

Do not modify logo-error either. The text of the error message you give it is completely up to you. It does
not have to match the error messages in this document, nor those in Berkeley Logo. It should, however, be
informative and genuinely helpful. However, the format of error messages, specifically the “*** Error:” that
logo-error prints must remain as is. We may do some automatic testing of this project, so errors must be
reported in a consistent format for the autograder to recognize them.

Lastly, it is not exactly true that nothing you type at the Logo prompt should crash the interpreter. There
is at least one thing we know of that will crash Logo. Typing a single "]" at the very start of your Logo
session will crash the interpreter:

STk> (initialize-logo)

? ]

*** Error: bad function in #f ;; this is an STk error

This is only a problem if typed immediately after Logo is initialized. After one normal evaluation, or even
one press of the Enter key, not even the single closing bracket will crash your interpreter. The reason for
this behavior is complicated, and we felt fixing it would needlessly complicate the driver-loop.

Although most of the errors you have to catch will be pointed out in this project description, it is your

responsibility to thoroughly test your interpreter and catch other errors not mentioned here.
Please report any error cases you find on the class newsgroup so others can know about them, and so that
the course staff can verify whether or not they are bona-fide errors and give hints on how to handle them.

14



2.2 The Logo Lexer

The metacircular evaluator uses the Scheme primitive read to read in a Scheme expression. The read

function is specifically designed for this purpose; it knows to do things like turn expressions enclosed in
parentheses into lists, and to turn the single character ’ into a call to the quote special form:

STk> (define what-i-typed (read))

’foo ;; this is my input

STk> what-i-typed

(quote foo)

Actually, read does a great deal more work then you might think. In addition to making lists, it looks at
the characters you type in and decides which ones should be “lumped together” to form atomic values. For
example, read knows that a sequence of numeric characters like 362 constitutes a Scheme integer, and a
sequence of numeric characters with a period in it like 3.002 constitutes a floating-point number. It knows
that a pound sign # marks the start of a boolean literal. It knows that a sequence of characters that cannot
be a number (contains at least one non-digit) like hello or 123hello4 or even f32437f makes up a Scheme
symbol. This process is known as lexing.

Using read on Logo expressions does not work because Logo has a very different syntax from Scheme.
As mentioned in Section 1.1, Logo expressions are not lists. Moreover, Logo has two different quoting
mechanisms. The single double quote in Logo quotes words:

? print word "abra "cadabra

abracadabra

? print "hello

hello

However, to quote a list in Logo you enclose it in square brackets:

? print first [look out trinity]

look

? print sentence [the first] "matrix

the first matrix ;; lists are printed without outermost brackets

A lot of students become confused by this! In Scheme, to treat an entire list literally, you just precede it
with a single quote as in ’(a b c). To get the same effect in Logo you’d say [a b c]. Saying "[a b c] in
Logo does not make sense since the double quote only works on words.

Because Logo source code looks so different from Scheme, a different lexer is needed for it. That’s where
logo-read, the procedure we’ve provided to read in a Logo expression, comes in. It is a rather complicated
procedure, and you do not need to understand how it works. You do need to understand what it does.

The logo-read procedure always returns a list of tokens, which are the various components of Logo code.
To play with logo-read, you must call it and type your input to it on the same line, like this:

STk> (logo-read)1 324 3.4

(1 324 3.4)

In the preceding expression, logo-read returned a list of three tokens, each of them a number.

STk> (logo-read)print sum 2 product 3 17

(print sum 2 product 3 17)

Here we get a list of 6 tokens, some of which are words and some are numbers.

But the main thing that logo-read does for you is turn literal Logo lists, typed by enclosing them in square

15



brackets, into the familiar Scheme lists:

STk> (logo-read)print list [a b c] [d e f]

(print list (a b c) (d e f))

The return value is a list of four tokens, the first is the word print, the second is the word list, the third
is the list (a b c) and the fourth is the list (d e f). As you can see, logo-read handles nested Logo lists
just fine:

STk> (logo-read)print [[a [b [[] c] [d] e] f] g]

(print ((a (b (() c) (d) e) f) g))

It has turned the deep Logo list [[a [b [[] c] [d] e] f] g] into the deep Scheme list ((a (b (() c)

(d) e) f) g).

The square brackets are used a lot in Logo to enclose code that is not to be run until later, if at all. For
example, Logo’s if procedure takes two arguments: the first must evaluate to the words true or false and
the second must evaluate to a list that will be executed as Logo code if the value of the first argument is
true:

? if emptyp [] [print [[] is empty]]

[] is empty

? if oddp 7 [print [7 is odd]]

7 is odd

? if emptyp [a b c] [print [[a b c] is empty]] ;; not empty

?

Here is how each of these expressions will look like when read in by logo-read:

STk> (logo-read)if emptyp [] [print [[] is empty]]

(if emptyp () (print (() is empty)))

STk> (logo-read)if oddp 7 [print [7 is odd]]

(if oddp 7 (print (7 is odd)))

STk> (logo-read)if emptyp [a b c] [print [[a b c] is empty]]

(if emptyp (a b c) (print ((a b c) is empty)))

As you can see, each Logo expression in square brackets is turned into a regular Scheme list. Don’t think
“logo-read turns square brackets into parentheses.” What really happens is that logo-read turns square
brackets into box-and-pointer lists, which are then printed by Scheme in the normal way with parentheses
around them.

One important difference between read and logo-read is that Scheme expressions can be several lines long
because they are delimited by matching parentheses; read keeps consuming input until it reaches the closing
parenthesis that matches the first opening one. Because it is more difficult to determine where a Logo
expression ends, logo-read makes the simplifying assumption that Logo expressions fit on one line. Hence,
logo-read will always read exactly one line of Logo code. All procedures called on this line better see their
arguments on the same line, or an error will occur when the line is evaluated.

For example, ifelse takes three arguments:

? ifelse listp [] [print [[] is a list]] [print [[] is not a list]]

[] is a list

When using ifelse, make sure that all three arguments to it appear on the same line, as shown above.

16



2.3 Working with Line-Objects

We will represent each line of Logo code as an instance of the following class:

(define-class (line-object text)

(method (next-token)

(if (null? text) (error "Empty line object"))

(let ((token (car text)))

(set! text (cdr text))

token))

(method (peek)

(car text))

(method (has-more?)

(not (null? text))))

Hence, when you see “line-obj” as a parameter name (as in logo-eval and logo-eval-line), know that it
refers to an instance of this class. You are able to remove the tokens from the line one-by-one, and find out
when there are no more. You may, of course, modify this class as you see fit.

The reason we are representing Logo lines as objects instead of as regular lists is a bit difficult to explain.
The basic reason is that since Logo expressions are not parenthesized, it is difficult to know where one
subexpression ends and another begins. Unlike Scheme code, which can be picked apart one subexpression
at a time, we shall examine Logo code one token at a time. And we will need a way to tell how many tokens
a recursive call to logo-eval has “consumed” from the line. The easiest way to do this is modify the state
of the line to reflect how many tokens remain to be evaluated. That’s why we “wrap” each line of Logo in
this object. Trust us on this one.

As you can see, the driver-loop reads a line of Logo code, wraps it in one of these line-object things and
hands it off to logo-eval-line to be evaluated. (We call logo-eval-line instead of logo-eval because
the line may contain several distinct Logo expressions; logo-eval will evaluate exactly one Logo expression.)

3 Okay, Get to Work

Time to write the actual interpreter.

3.1 Primitive Procedures

The first thing the interpreter will need is a set of primitive operators. Like in the metacircular evaluator,
primitive procedures should be STk procedures, and should be applied in underlying Scheme. You need
to design a representation for primitive procedures, and devise a method to store them somewhere. We
recommend making good use of data abstraction in your representation, in case you’ll need to tweak it later.

The arguments to primitive procedures must be of the appropriate types, or an error should be triggered
with logo-error. For example:

? print sum product 4 5 "foo

*** Error: arguments to sum not numeric: 20 "foo

? word [what time is] "it

*** Error: arguments to word not words: [what time is] it

As you can see, the arguments to any of the mathematical operations must pass the number? predicate;
both arguments to word must pass the word? predicate. Some primitives are more picky still because they
require that only one of their arguments meet some condition:

17



? if "maybe-true [print "yes]

*** Error: first argument to if not true or false

? quotient 10 0

*** Error: division by zero

Here is a listing of the required primitive procedures, what they do and hints on error handling. You should
feel free to add more primitives to your Logo interpreter, but you must have at least these:

• sum, product, difference — These correspond to the Scheme functions +, * and -. In Logo, they
each take only two arguments, both of which have to pass the number? predicate.

• unary-minus — This procedure takes one argument, which has to be a number, and negates it, as in:

? print sum 3 -3

0

You won’t ever have to call it directly. Instead, logo-read turns some occurrences of - into unary-minus:

STk> (logo-read) print sum 3 -3

(print sum 3 unary-minus 3)

Remember, we are not handling +, * and - as infix operators.

• quotient — Despite it’s name, this procedure corresponds to / in Scheme, not to quotient. Both
arguments to it must be numeric, and the second one cannot be zero. One way to catch the division-
by-zero error is to put a wrapper around /:

(lambda (a b) (if (= b 0) (logo-error "division by zero") (/ a b)))

Unfortunately, calling logo-error outside the Logo interpreter might not work, so you won’t be able
to test this in isolation.

• first, butfirst — Remember these from the start of the semester? Well, Brian Harvey stole these
Logo procedures and put them into Scheme. In Logo, however, they work a little differently. Since
Logo has lists, sentences and words first and butfirst work on all three types. They each take one
argument, and if that argument is a word, call the Scheme version of first or butfirst; if it is a list
(or sentence) call car and cdr. Remember, numbers are words, so the following is not a bug:

? print butfirst 3454

454

While there is no empty word in Logo, there is an empty list (sentence), []. Using any of the above
on it is an error.

• word — Takes two arguments, both of which have to satisfy the word? predicate, and works just like
the similarly named function in Scheme.

• list — Takes two arguments, which can be of any type, and works like the similarly named Scheme
primitive.

• sentence — Takes two arguments, which have to be either words or sentences, and works just like
Scheme’s sentence function. Use the Scheme function sentence? to test the arguments.

• fput — This is cons, but with a slight twist. Logo does not allow arbitrary pairs:

? fput 3 10

*** Error: second argument to fput not a list

In our implementation, arbitrary pairs (pairs that are not lists) are fatal since the given logo-print

procedure will not display them correctly. Make sure that the second argument to fput is a list—it
must pass the list? predicate. The first argument can be anything.

18



• wordp, numberp, listp, emptyp, — These are general Logo predicates. They each take one argument,
which can be of any type (after all, the point of a predicate is to test the type of its argument),
and return the word true or false. Unlike Scheme, Logo does not have a special boolean type. For
example:

? print numberp sum 2 3

true

? print wordp listp []

true

The corresponding Scheme function should be obvious for most of these, but you’ll need to convert
Scheme’s notion of truth to Logo’s.

• equalp, lessp, greaterp — These are the binary predicates; equalp is Scheme’s equal? and works
on any types:

? print equalp 7 [[a] [[deep] list]]

false

? print equalp numberp "hello emptyp [not empty]

true

The other two, lessp and greaterp, correspond to < and > and must be given two numbers. Again,
don’t forget to convert Scheme booleans into the words true and false.

• print — This one-argument function corresponds to the logo-print procedure that is given. The
argument to it can be any Logo type.

• load — This function corresponds to the provided meta-load procedure; it takes the name of a file,
which must be a word, and loads the contents of the file into Logo. As you can see, the error-checking
is already done in the function, so you need only add it as a primitive procedure. To use it, type:

? load "numspell.lg

• if, ifelse — These procedures correspond to the procedures logo-if and logo-ifelse that are
provided; if takes two arguments and ifelse takes three. See Section 2.5 on Special Forms for details
on using if and ifelse. For example, here is the code for logo-if:

(define (logo-if env pred consequent)

(if (not (true-or-false? pred))

(logo-error "argument to if not true/false: " pred))

(if (logo-true? pred)

(logo-run env consequent)

void))

As you can see, it takes an extra argument env that is not provided by the Logo programmer. It is
the current environment, and must be supplied to logo-if so that consequent may be evaluated with
respect to it. It is up to you to figure out how to pass the environment to procedures that

need it. Making it an additional argument to logo-if is just a suggestion. Same for logo-ifelse

and logo-run. This is your interpreter and you can design things the way you want to. (The only
thing you cannot do is add any special forms.)

• run — This procedure corresponds to the logo-run procedure that is provided. It takes one argument,
a list that looks like Logo code, and evaluates it in the current environment.

? print run [sum 1 butfirst 110]

11

? run [print fput "one ifelse "false [[foo bar]] [[2 3 4]]]

one 2 3 4

19



Just like logo-if and logo-ifelse above, logo-run needs access to the environment. How you do
this is up to you.

After you have added these primitive procedures, you must implement a way to give them their

arguments. Essentially, write a list-of-values function (from MCE) for Logo. Since you will want to
use it for compound procedures too, it would be a good idea for this function to take as a parameter the
number of arguments required. Hint: Take in the line-object, but let logo-eval do the work of evaluating
the arguments.

Test your work on the nastiest compositions of primitives you can think of. Here are some ideas:

? print numberp sum first 324 quotient 20 first [2 4 6]

true

? ifelse first [true false] [run [print "yes]] [run [print "no]]

yes

? print quotient 27 run [3]

9

? if word "t word "r word "u "e [print quotient product 10 10 0]

*** Error: division by zero

? print fput [hello] sum "one word "tw "o

*** Error: bad arguments to sum: one two

In addition to the errors described above, there are two more error cases we want you to catch. Handle the
case when a procedure is not given enough arguments:

? sum

*** Error: not enough inputs to sum

? print product first [1 2 3]

*** Error: not enough inputs to product

? ifelse "true [print "yes]

*** Error: not enough inputs to ifelse

This situation occurs when the line-object becomes empty, but you’re still gathering arguments. The text of
the error message is up to you. You don’t have to include the name of the procedure that is lacking inputs,
although that would make your interpreter more user-friendly.

Note that the case of too many arguments to a procedure is already handled by logo-eval-line and
driver-loop:

? print [a] [b] [c] [d] [e]

a

*** Error: you did not say what to do with [b]

The other error situation concerns Logo commands. Recall that Logo commands, like print, are not supposed
to return a value. They are used only for their side-effects. We implement this behavior by having print

return void. It does not make sense, then, to use the return value of print as a subexpression, like this:

? list print [hello] "there

hello

*** Error: print did not output to list

? print print 7

7

*** Error: print did not output to print

Please catch this error. An easy way to do this is to check that none of the arguments to a procedure are
void. Use the void? predicate that is given.

20



3.2 Variables

The next step is to create variables. We have not needed them so far because procedures are not variables
in Logo. However, we’ll need them in the next section to implement compound procedures.

3.2.1 Environments

We need to represent environments in some way. You should be familiar with the basic operations on environ-
ments: looking up, creating and altering variable bindings. Currently the value of logo-global-environment
is foo, which is not a good environment. Once you have decided how to represent environments, you should
change logo-global-environment to be something more reasonable.

If you like the way environments are represented in the metacircular evaluator, feel free to steal the imple-
mentation and to modify it as you see fit. You can use Kurt’s environments from lecture. You may instead
want to implement environments from scratch in your own way (maybe as OOP objects!). The implemen-
tation of environments is completely and utterly up to you. The Logo programmer will be oblivious to their
existence.

A good place to put any initialization code for environments (or other aspect of the Logo interpreter) is in
the initialize-logo function, just before the call to driver-loop:

(define (initialize-logo)

;;

;; ADD ANY INITIALIZATION CODE HERE

;;

(logo-read) ;; hack to avoid repeated ? prompt

(driver-loop))

3.2.2 Operations on Environments

As you can see, the variable? clause already exists in logo-eval, along with the definitions of variable?
and variable-name. Variables in Logo are prefixed with a colon, but the colon is not part of their name.
Hence, :n is a request to look up the value of the variable n. You need to write lookup-variable-value.
A variable that is not bound should produce an error:

? list :a :b

*** Error: a has no value

When we create compound procedures in the next section, we will require an ability to extend environments.
So you may want to provide an extend-environment function now. If you are using the metacircular
evaluator’s representation of environments, it is already written.

3.2.3 Make

How does one actually create variables in Logo? You use the make primitive; it plays the roles of both define

and set!. The first argument to make is the name of the variable, and the second argument is the value. If
the variable already exist in some environment (possibly an enclosing environment), make should change its
value there; otherwise, make must create the variable in the global environment. For example:

? print :plus

*** Error: plus has no value

? make "plus "sum

21



? print :plus

sum

? run fput "print fput :plus [10 30] ;; (cons ’print (cons plus ’(10 30)))

40

? make "plus "equalp

? run fput "print fput :plus [10 30]

false

Your job is to implement make, then add it as a primitive procedure to your Logo interpreter. Do not add

make as a special form! See Section 1.5 on Special Forms for more information on make. Check that the
first argument to make is a word, and call logo-error if this is not the case:

? make [a b c] 6

*** Error: bad variable name [a b c]

Berkeley Logo actually allows you to make variables out of numbers:

? make 74 7

? print :74

7

The decision to allow or disallow fully numeric variable names is left to you; we will not test this case.

Note that make is a command, so it should return void.

Since we don’t yet have compound procedures working, we don’t have local environments, so it’ll not be
possible to test make fully through the Logo interpreter. Test make in isolation by creating environ-

ments by hand. Also, test the interaction of variables with primitive procedures and error handling. Here
are some ideas to get your started:

? make "true.value "true

? make "false.value "false

? print list fput :true.value [] fput :false.value []

[true] [false]

? if :false.value [print product 2 :six]

? make first [six seven] 6

? if :true.value [print product 2 :six]

12

3.3 Compound Procedures

Time to invent compound procedures! You will need to come up with a representation for compound proce-
dures, and a place to put them (maybe together with primitive procedures?). One thing that a compound
procedure should probably know is how many arguments it takes. You should be able to employ the same
argument-gathering mechanism for primitive and compound procedures. To simplify our interpreter, all
procedures take a set number of arguments.

The next step is to write Logo’s only special form, to. The Scheme procedure that implements it is eval-to.
A Logo procedure definition looks like this:

to fib :n

if equalp :n 0 [output 1]

if equalp :n 1 [output 1]

output sum fib difference :n 1 fib difference :n 2

end

22



Immediately after the to token you should expect to find the name of the procedure, a word. The rest of
the line contains formal parameters to the procedure, each in the form of a Logo variable.

The body of the procedure consists of zero or more lines of Logo code. The job of eval-to will be to read in
these lines (using logo-read) stopping when a line containing just end is encountered. How you store the
body of a Logo procedure is completely up to you. As eval-to reads in these lines, it should prompt the
user by printing an arrow ("-> "), so the actual interaction would look like this:

? to fib :n

-> if equalp :n 0 [output 1]

-> if equalp :n 1 [output 1]

-> output sum fib difference :n 1 fib difference :n 2

-> end

fib defined

The word “end” is not part of the body of the procedure. It is simply a marker telling eval-to that the
body is finished. After you see “end,” print out “〈name of procedure〉 defined” and store the procedure
somewhere.

You should perform some error-checking at definition-time. Make sure that the name of the procedure (the
token that follows to) is a word; make sure that all the formal parameters are Logo variables (use the given
variable? procedure).

Berkeley Logo prevents users from re-defining procedures. Once you define square you are stuck with it—you
cannot define square again. It is up to you to allow or disallow procedure re-definition.

The body of a procedure can consist of zero or more lines of Logo, so the following is a valid Logo procedure:

to do.nothing :a :b :c :d

end

3.3.1 Evaluating the procedure body

The next task will be to write a version of eval-sequence for Logo, which will evaluate the body of a Logo
procedure in a given environment. The job of eval-sequence will be to evaluate each line in the body of a
procedure. Each line in the body of a procedure must result in void, stop or output—otherwise print the
“you don’t say what to do with X in FOO” error. The details of this process are left to you.

To make stop and output work, you will need to add them as primitive procedures to the interpreter.
The stop procedure takes zero arguments and corresponds to the given logo-stop function. The output

procedure corresponds to logo-output and takes one argument. Here they are:

(define (logo-stop) stop)

(define (logo-output x) (set-cdr! output x) output)

As you can see, they return one of the following pairs:

(define output (cons ’output ’whatever))

(define stop (cons ’logo ’stop))

The reason they’re pairs is so that, as with void, we can test for them using the provided predicates stop?
and output?.

When stop is evaluated in a procedure body, you should stop all further evaluation of the body and return
void. When output is evaluated in a procedure body, you should stop all further evaluation of the body

23



and return the thing in the cdr of the pair. The details of this process are left to you to figure out. You may
even implement stop and output without using any of the code we’ve given you; you may wish to discuss
your approach with a TA first, however.

Try to test your eval-sequence procedure in isolation first; make up a non-recursive procedure body and
run eval-sequence on it.

The last thing to do is to modify logo-apply to handle compound procedures. This is where you will
implement dynamic scope.

First test your work on non-recursive procedures, then try things like factorial, fib and count-down.
Once you have gotten compound procedures to work, you have pretty much completed the project. The rest
is fluff. Thoroughly test your implementation of compound procedures, as it will be worth the

bulk of the project points.

3.3.2 Error handling with stop, output and to

The addition of stop and output means a host of new errors need to be caught. The two procedures stop
and output are only allowed inside the body of a procedure. Invoking them at the prompt should cause an
error:

? stop

*** Error: you can only use stop inside a procedure

? output "hello

*** Error: you can only use output inside a procedure

? run [output []]

*** Error: you can only use output inside a procedure

? run [print "a print "b stop]

a

b

*** Error: you can only use stop inside a procedure

? print if "true [output 4]

*** Error: you can only use output inside a procedure

? if stop stop stop

*** Error: argument to if not true or false

Model your error-handling on Berkeley Logo. Things that cause errors in Berkeley Logo should also cause
errors in your interpreter—but the error messages don’t need to match. In fact, you don’t even have match
the error. In the case of if stop stop stop above, for example, the “you can only use stop inside a
procedure” is also appropriate.

Moreover, inside or outside a procedure body, stop and output cannot appear as an argument to other
functions.

? print sum output 17 2

*** Error: output not valid as subexpression

? first stop

*** Error: stop not valid as subexpression

? to mess.up

-> print stop

-> end

mess.up defined

? mess.up

*** Error: stop not a valid subexpression

24



Here are more procedure definitions that should produce errors when run (the text of the error message is
up to you):

to mess.up1 :a :b :c

output stop

end

to mess.up2 :a :b :c

output output output sum :a :b

end

to mess.up3 :a :b :c

output print :a

end

Note that saying if emptyp :lst [output []] inside the body of a procedure is okay because we’re not
using output as an argument to if. The second argument to if is the two-element list [output []].

Doing error checking on to is harder, because it is a special form. Berkeley Logo prevents users from using
to inside a procedure, as in:

to huh :a :b

to bar

end

Berkeley Logo also prevents using to as a subexpression, as in:

print to square

You are not responsible for doing error-handling of to because it is difficult. You may assume that to will
be typed at the Logo prompt and nowhere else. Still, give it a try if you’re up for a challenge. We may even
offer extra credit for people who do error-handling of to. Model your error-handling on Berkeley Logo.

3.4 Extra Features

We are going to add two more features to our Logo interpreter. Neither of them should require more than
five lines of code to implement.

3.4.1 Local

Add local to your Logo interpreter. This procedure creates local variables. That does not say “local state”
variables, the kind that persist across procedure calls; that would be much, much harder in a dynamically
scoped language. (Why?) This procedure takes either a single word, or a list of words. A variable is created
in the current environment for each of these words, with that word as its name. Unlike make, a variables
made by local is not immediately assigned a value. The value must subsequently be assigned with make.
It is an error to use a variable made by local before it has a value.

? local [fluffy buffy love] ;; creates three variables,

? print :fluffy ;; but they are uninitialized

*** Error: fluffy has no value

? make "fluffy "pink

? print :fluffy

pink

? print :buffy

25



*** Error: buffy has no value

? make "love "green

? print :love

green

Here is a more useful example of local in action:

? to factorial :n

-> local "result make "result 1

-> fact.help

-> output :result

-> end

factorial defined

? to fact.help

-> if equalp :n 0 [stop]

-> make "result product :result :n

-> make "n difference :n 1

-> fact.help

-> end

fact.help defined

? print factorial 6

720

? print :result

*** Error: result has no value ;; result was never a global variable

The tricky part will be to figure out what to make the initial value of the variable, the value it is given
immediately after the call to local, before it is set with make. It must be a special kind of value that
denotes the lack of any real value. Importantly, there should not be a way of creating this value from the
Logo side. That is, it must not be possible to do the following:

? make "x 〈some Logo expression〉
? print :x

*** Error: x has no value

3.4.2 Read

The interpreter is almost complete. Almost. If you take a step back and survey what you’ve done you’ll
realize that the Logo interpreter is missing something rather fundamental. You can’t write any Logo programs
that interact with the user! This is because there is no way for the Logo programmer to read user input.
Fix this situation by adding the Scheme procedure logo-read as a primitive. It should correspond to a
zero-argument Logo procedure called read. We are not going to provide any sample calls for this one, since
you should be able to figure out for yourself when you have done this correctly.

Please demonstrate our new ability to interact with the user by writing a Logo version (it doesn’t have to
be identical) of the following Scheme program:

(define secret 0)

(define (guess)

(set! secret (random 100))

(print "I am thinking of a number ... can you guess what it is?")

(guess-loop))

(define (guess-loop)

26



(display ">>> ")

(let ((input (read)))

(cond ((= input secret) (print "You’ve got it!"))

((< input secret) (print "Too low.") (guess-loop))

(else (print "Too high.") (guess-loop)))))

27


