
 Name:__ Login:______________

 1

University of California at Berkeley

College of Engineering
Department of Electrical Engineering and Computer Sciences

CS61c Woojin Yu
Summer 2001

Midterm Exam

This is a closed-book exam. No calculators please. You have 1 hour. Each question is marked
with its number of points.

This exam booklet should have 8 printed pages. Check to make sure that you have all the pages.
Put your name and login neatly on each page.

Show your answers in the space provided for them. Write neatly and be well organized. If you
need extra space to work out your answers, you may use the back of previous questions.
However, only the answers appearing in the proper answer space will be graded.

Good luck!

Problem maximum score
1 35pts
2 22pts
3 23pts
4 15pts

Total 95pts

 Name:__ Login:______________

 2

MIPS instructions

Important – please note: The MIPS instructions shown in this table are the ones that you must
use on the entire exam. Do not use any instructions that are not in this table. If you use any
instructions not listed below, you will lose points.

The columns under “format” show the bit fields of the instructions. The number in the
parentheses following each name is the number of bits in that field.

In the table, PC refers to the program counter.

You may carefully tear this page from your exam booklet for easy reference.

name Format Syntax meaning
 Op(6) rs(5) rt(5) rd(5) Shamt(5) func(6)
add 0 0 32 add rd,rs,rt rd = rs + rt
sub 0 0 34 sub rd,rs,rt rd = rs - rt
and 0 0 36 and rd,rs,rt rd = rs AND rt
or 0 0 37 or rd,rs,rt rd = rs OR rt
sll 0 0 0 sll rd,rt,shamt rd = logical shift rt left shamt bits
srl 0 0 2 srl rd,rt,shamt rd = logical shift rt right shamt bits
slt 0 0 42 slt rd,rs,rt if rs<rt set rd=1 else rd=0
jr 0 0 0 0 8 jr rs PC=rs
 Op(6) rs(5) rt(5) immediate(16)

addi 8 addi rt,rs,immed rt = rs + immed
andi 12 andi rt,rs,immed rt = rs AND immed
ori 13 ori rt,rs,immed rt = rs OR immed
lw 35 lw rt,immed(rd) rt = MEMORY[rd+immed]
sw 43 sw rt,immed(rd) MEMORY[rd+immed] = rt
lui 15 Lui rt,immed rt = immed shifted left 16 bits
beq 4 beq rs,rt,label branch if equal
bne 5 Bne rs,rt,label branch if not equal
 Op(6) target address(26)

j 2 j label jump
jal 3 Jal label jump and link

 Name:__ Login:______________

 3

1. Rewrite the following C source code using the MIPS Assembly instructions. Please follow the
register conventions mentioned in class. ONLY USE THE INSTRUCTIONS ON PAGE 2.

int func1(int *a)
{
 int *temp;
 if (*a)
 {
 temp=a;
 a++;
 return(*temp+func1(a));
 }
 else
 return 0;
}

Answer
The following solution keeps closely to the C code:
func1: # $s0 is a, $s1 is temp
 addi $sp, $sp, -16 # allocate stack
 sw $s0, 0($sp) # save some registers
 sw $s1, 4($sp)
 sw $ra, 8($sp) # save the return address
 add $s0, $0, $a0 # make s0 hold the value of a
 lw $t0, 0($s0) # derefrence a, t0 = *a
 beq $t0, $0, else # if (*a == 0) then do the else
 addi $s1, $0, $s0 # temp = a
 addi $s0, $s0, 4 # a++, a is an int pointer
 lw $t1, 0($s1) # dereference temp
 sw $t1, 12($sp) # save (*temp) so it survives the jal
 add $a0, $s0, $0 # put a as arg to func1
 jal func1 # call func1(a)
 lw $t1, 12($sp) # bring back the value of (*temp)
 add $v0, $t1, $v0 # return = (*temp)+func(a)
 j fin
else:
 add $v0, $0, $0 # return 0
fin:
 lw $s0, 0($sp) # save some registers
 lw $s1, 4($sp)
 lw $ra, 8($sp) # save the return address
 addi $sp, $sp, 16 # allocate stack
 jr $ra

Grading
3 points for each of the following (partial credit was given):
1) allocating space on the stack and storing
$ra and other registers you needed

6) restoring temp if needed

2) dereferencing a correctly 7) dereferencing temp, if necessary
3) implementing the branch correctly 8) correct resulting value in $v0
4) implementing the pointer arithmetic
correctly

9) storing 0 in $v0 for the else case

5) setting $a0 correctly 10) restore stack, $ra, other registers

 Name:__ Login:______________

 4

2. In the following, some of the statements are incorrect or illegal; cross out any such bad
statements. Show in the spaces provided what the remaining print statements will print when the
program is executed. Briefly state why the illegal statements are wrong.

int main()
{
 char a = ’A’, ur[] = "ORDINALS", b = ’C’;
 char *alpha = &a, *beta = alpha, *gamma = ur;
 char **aleph = &alpha, **beth = &beta
 printf("%c\n", *gamma);

The letter ‘O’.

 printf("%s\n", b);

Incorrect, b isn’t a char*.

 printf("%c\n", *beta);

The letter ‘A’.

 printf("%c\n", alpha);

Incorrect, alpha isn’t a char.

 alpha = ur + 1;

Correct, but nothing printed.

 printf("%c\n", *(ur + 3));

The letter ‘I’.

 printf("%s\n", &ur[1]);

The string “RDINALS”.

 Ur = alpha;

Illegal, can’t assign to an array.

 printf("%c\n", *beta);

The letter ‘A’.

 beth = &(alpha);

Correct, but nothing printed.

 If((*aleph)[1] == (*beth)[1])
 printf("CH is true.\n");

This case is printed.

 Else
 printf("CH is false.\n");

 return 0;
}

Grading
Each part was worth 2 points. We tried not to let wrong answers cascade, but the way we did this
is a little complicated to explain.

 Name:__ Login:______________

 5

3. Convert this MIPS machine code into MAL (MIPS Assembly Language) instructions. Your
final answers should use the register names, not the numbers (i.e. $t0, not $8)
Also, values which represent addresses (if any) should be converted into the full 32 bit address.
Some space is left below each binary encoding to let you write down your work. However, you
will only receive credit for what you write in the answer box.

Address: Instructions:

001000 11101 11101 11111 11111 111100
0x10001A00

101011 11101 11111 00000 00000 000000

0x10001A04

000011 00000 10000 01000 00000 000111

0X10001A08

000000 00010 00010 00010 00000 100000

0X10001A0C

100011 11101 11111 00000 00000 000000

0X10001A10

001000 11101 11101 00000 00000 000100

0X10001A14

000000 11111 00000 00000 00000 001000 0X10001A18

Answer Box:
Address: Instructions:
0x10001A00 addi $sp, $sp, -4

0x10001A04 sw $ra, 0($sp)

0X10001A08 jal 0x1041001C

0X10001A0C add $v0, $v0, $v0

0X10001A10 lw $ra, 0($sp)

0X10001A14 addi $sp, $sp, 4

0X10001A18 jr $ra

Grading
Each of the instructions were worth 3 points, except for the jal, which was worth 5. You lost 1
point for each mistake you made on an instruction, until you lost all the points associated with
that instruction.

 Name:__ Login:______________

 6

4. Short Answer Questions (5 Parts)
a. Assume an 8-bit two’s complement machine on which all operations are performed on 8-bit
registers. Answer the results of the following operations in hexadecimal. Assume that
subtraction is done with SUBU and addition is done with ADDU.

 (i) 43 (hex)
 - 4A (hex)

 F9 (hex)

 (ii) 82 (hex)
 + AB (hex)

 2D (hex)
Grading
Each part was worth 2 points. 12D for part (ii) got you 1 point, unless you said something about
a trap not occurring on ADDU, or overflow not being detected, or something like that. For both
parts, we also accepted correct answers in binary or decimal.

b. List the two values that can change on execution of the jal instruction.

Answer
The values we were looking for were $ra and PC. Some people put down $v0, $a0, or
something like that; these might be changed in preparation for a jal or before returning from a
jal, but not directly by the jal itself.

Grading
These were 1 point each, no exceptions.

c. Describe how the calculation of the target address for the beq instruction is different from that
of the j instruction.

Answer
We accepted answers mentioning either that

1) The beq instruction is PC-relative, while the j instruction is absolute (well, it is a little
bit PC-relative because it takes the top 4 bits of the PC, but that’s beside the point).

2) The beq takes the 16-bit immediate and adds it (after multiplying by 4) to the PC,
whereas the j takes the 26 bits in the instruction, multiplies by 4, and takes the top 4 bits
of the PC for its own top 4 bits.

Grading
We were generous with partial credit on this question; if you had some idea, we gave you a
point, but you had to be fairly detailed to get full credit. Yes, it was a little subjective.

 Name:__ Login:______________

 7

d. What output would typically be seen from running the following (correct)
program on a 32-bit machine, such as the MIPS machine we are studying? The
sizeof operator determines (at compile-time) the size (in bytes) of the type
yielded by its argument.

#include <stdio.h>

int main (void)
{
 char a[] = "foobar", b[15] = "baz", *c = "garply";
 int d[5] = { 1, 2, 4, 8, 16 };
 void bar (char*, int[]);

 printf("%d\n", sizeof(a));
 printf("%d\n", sizeof(b));

 bar(c, d);

 return 0;
}

void bar (char *c, int d[])
{
 printf("%d\n", sizeof(c));
 printf("%d\n", sizeof(d));
}
List, in order from first to last, the four values that appear.

Answer

1) 7. Since a is an array initialized without specific bounds, the initializer determines the
array size. 6 for the letters in "foobar", plus 1 for the null-terminating character.

2) 15. b is a char array, with 15 elements, so it takes 15 bytes of storage.
3) 4. c is a pointer, and the typical size of a pointer on a 32-bit machine is 32 bits, or 4

bytes.
4) 4. d is actually a pointer to char, not an array, since arrays cannot be passed by value in

C.

Grading
This was worth 4 points, 1 point for each correct printed value.

 Name:__ Login:______________

 8

e. Write an equivalent, one-line statement in C. Do not use any bit operators
or the comma operator (no &, |, ^, ~, <<, >>, or commas). Assume the C variable
unsigned int x is stored in register $t0.

andi $t0, $t0, 63

Answer
We expected you to write something like x = x % 64; or similar. This is because we are
basically masking out all bits past the 6th lowest (which represents 26). But since these bits all
add on values that are multiples of 64, they would have left a remainder of 0 when divided by 64.
A lot of people wrote something like x = x + 63. Perhaps you misread andi as addi (no
comment), or you had an OR operation in mind, although that wouldn’t quite have worked either.

Grading
This was worth 2 points. If you mentioned mod or modulo (but you didn’t write the %), or if you
had a % but the wrong modulus, we gave you a point if you were close; e.g., if you said x = x
% 63.

Relaxation Question:

 What is your favorite movie?

Answer
The correct answer was Forrest Gump, but since this question wasn’t worth any points, it didn’t
much matter what you put.

