
Chapter 10

Storage Management

[These notes are slightly modified from notes on C storage allocation from the Fall
1991 offering of CS60C. The language used is C, not Java.]

10.1 Classification of storage

In languages like C or Java, the storage used by a program generally comes in three
categories.

Static storage. This refers to variables—generally given names by declarations—
whose lifetime by definition encompasses the entire program’s execution.

Local storage. Variables—also usually named in declarations—whose lifetimes
end after the execution of some function or block.

Dynamic storage. Variables (generally anonymous) whose lifetime begins with
the evaluation of a specific statement or expression and ends either at an
explicit deallocation statement or at program termination.

For example, in Java, static variables are introduced by as static fields in classes. C
and C++ also allow for static variables in functions and outside classes and functions
(at the “outer level” where they are in effect static fields in a giant anonymous class).
For example,

int rand(void) /* C code */
{

static int lastValue = 42;
extern int randomStatistics;

...
}

Here, there is a single variable lastValue and a single variable randomStatistics
that retain their last values from call to call. It is true that only the function rand

143

144 CHAPTER 10. STORAGE MANAGEMENT

is allowed to access lastValue by name, but that is an independent question1.
Local variables in Java and C are simply non-static, non-external variables or

parameters declared in a function. They disappear upon exit from the function,
which is why the following piece of code, beloved of C beginners, is almost certainly
incorrect.

int* newIntPointer(int N) /* C code */
/* Return a pointer to an integer initially containing N. */

{
int X = N;
return &X;

}

In C, one can have pointers to simple containers: &X creates a pointer to the con-
tainer X, and int* denotes the type pointer-to-int. The variable X officially dis-
appears immediately after the return. Practically speaking, this means that the
compiler is allowed to re-use the storage location that was used to contain X at any
subsequent time (which will probably be the very next call to any function).

Finally, dynamic variables in Java and C++ are the anonymous objects the
programmer creates using new, or in C using calloc or malloc. In C and C++,
any deallocation that takes place must be explicit (by use of the free function or
delete operator, respectively). Languages like Java and Lisp have no explicit free
operation, and instead deallocate storage at some point where the storage is no
longer needed. We’ll discuss how later in this chapter

Just to show that hybridization is possible, some C implementations support
a function called alloca. This takes the same argument as malloc and returns a
pointer to storage. But the lifetime of the storage ends when the function that called
alloca exits (one may not free storage allocated by alloca). The storage is there-
fore sort of “locally dynamic.” It is useful for functions that create local linked lists
(for example) or arrays whose sizes are not known at compilation. Alas, due to the
peculiar runtime memory layouts used by some machines and C implementations,
it is not a standard function.

10.2 Implementation of storage classes

It is not my purpose to give a comprehensive survey of all the twists employed in
implementing the various classes of storage described above. Instead, I’ll describe
one implementation as representative—that used in most Unix implementations.

Figure 10.1 diagrams the layout of memory from the point of view of a single
Unix process2. Static storage resides in a fixed, writable area immediately after

1Rules that determine which parts of a program may name the variable defined by a particular
declaration are called scope rules. In this section, we discuss rules about how long a variable
exists—its extent or lifetime—regardless of who (if anyone) is allowed to name it. Unfortunately,
the term “scope” has been given various meanings in the literature, some of which involve lifetime.
Be cautious, therefore, in interpreting the term.

2As you probably know, there are generally numerous Unix processes at any given time, each

10.3. DYNAMIC STORAGE ALLOCATION WITH EXPLICIT FREEING 145

Stack

Unallocated

Heap

Static
storage

Executable
codeAddress 0

Figure 10.1: An example of run-time storage layout: the Unix C library strategy.

the area containing instructions and constants for the program (which is called
the text segment). Local storage resides in the run-time stack, which grows down
toward the static storage area. The area in between is available for the program to
request and use as it will. The standard C library uses the beginning of this area
for dynamic storage, growing the portion it uses for this purpose toward the stack.
By an unfortunate and confusing convention, the dynamic storage area is known
as the “heap,” although it has nothing in common with the data structure we have
used for priority queues.

10.3 Dynamic storage allocation with explicit freeing

The C language and its standard library present the following features.

1. Storage may be allocated dynamically at any time by a library call.

2. Dynamically-allocated storage may be freed at any time by a library call.

running its own program. All of them seem to have access to all of memory, as if they were each
alone on the machine. This trick is accomplished by means of a hardware feature known as virtual
memory, which allows different processes to have the same address for physically distinct pieces of
memory.

146 CHAPTER 10. STORAGE MANAGEMENT

3. Programs may cast void pointers—which include the pointers returned by
dynamic allocation—to and from pointers of any type with a compatible size
and alignment. This casting operation may not change the contents of the
allocated storage.

4. Programs may cast the pointers returned by dynamic allocation to and from
sufficiently large integer types.

As will become clearer when we look at storage management in Lisp and Java,
items 3 and 4 above militate against automatic storage de-allocation in C. That is,
it is in principle impossible to determine automatically that a particular piece of
storage is no longer needed and may be “recycled” for use in future allocations. It is
likewise impossible to move dynamically-allocated storage regions around “behind
the programmer’s back” to make room, say, for a new, dynamically-allocated object.
The C library allocates blocks of storage when requested and never touches them
again until it is requested to free them.

The general strategy is to maintain a list of blocks of unallocated storage, called
the free list. When there is a request to allocate storage, we search the free list
for a block of sufficient size, and return the address of an appropriate portion of
it, possibly returning leftover storage to the free list. When no block of sufficient
size for a request exists on the free list, the library requests a new large block of
free storage from the underlying operating system. When there is a request to free
storage, we return the block of storage to the free list.

This sketchy description needs some refinement. We must assume that the li-
brary can determine sizes of allocated and free blocks. There is also a problem that
will arise when a large number of blocks have been freed: storage becomes frag-
mented as small blocks are released. Formerly-large blocks gradually get allocated
as many small ones, until requests for large amounts of storage cannot be met. To
combat this problem, it is often desirable to coalesce adjacent blocks of free storage
back into larger blocks. There are numerous ways of filling in the resulting strategy.
Here, I’ll describe two concrete methods for explicitly allocating and freeing storage.

Java does not provide the operations needed to implement memory management,
so the remainder of this chapter actually uses C, which your instructor can explain
as needed. Basically, the additional functionality we need is the ability to change
an arbitrary integer number back and forth into an address of an arbitrary kind of
object.

10.3.1 Boundary tag method

The first method requires an additional administrative word of storage for each free
or allocated block, which will immediately precede the block. The free list will be
a circular doubly-linked list of blocks. If X is a pointer to a block, then we will
assume the existence of the following operations on a block X and its administrative
word.

isFree(X) a boolean value that is true iff X is the address of a free block.

10.3. DYNAMIC STORAGE ALLOCATION WITH EXPLICIT FREEING 147

precedingIsFree(X) a boolean value that is true iff the block of storage imme-
diately preceding X is free. This value is normally false if X is a free block
(that is, adjacent free blocks are generally coalesced rather than being left
separate).

blockSize(X) the size of block X, including its administrative word.

precedingBlock(X) is valid only if precedingFree(X). It is the address of the
free block adjacent to and preceding X in memory.

followingBlock(X) is the address of the block immediately following X in mem-
ory.

freeNext(X) is the address of the next free block in the free list. It is valid only
if isFree(X).

freePrev(X) is the address of the previous free block in the free list. It is valid
only if isFree(X).

For convenience, I’ll assume these are defined so as to be assignable (so for example,
to set blockSize(X) to V , I’ll write blockSize(X)=V).

These interfaces are written abstractly just to remind you that different machines
may require different implementations. Here, for example, are concrete definitions
that will work on Sun Sparc workstations; Figure 10.2 illustrates how the data
structures fit together3

typedef struct AdminWord AdminWord;

/* The type Address is assumed to be large enough to hold any
* object’s address. We also assume that
* sizeof(AdminWord) = sizeof(Address). */
typedef long Address;

struct AdminWord {
unsigned int

size : 30, /* The size of this block, including the
* administrative word. The size is always
* a multiple of 4 and is always at least 12. */

isFree : 1,
precedingIsFree : 1;

};

/** The administrative word associated with a block at location X is
* stored immediately before X. */

3The “field : length” notation in C indicates that a given field of a record occupies exactly length
bits. Consecutive bit fields of this sort are generally packed together. The compiler generates the
necessary shifting and masking instructions to extract and set them when called for.

148 CHAPTER 10. STORAGE MANAGEMENT

#define _ADMIN_WORD(X) ((AdminWord *) (X))[-1]

/** The minimum size of a free block. */
#define MIN_FREE_BLOCK (3 * sizeof(Address))

/** True iff the block at location X is a free block. */
#define isFree(X) (_ADMIN_WORD(X).isFree)
/** True iff the block just before the block at location X is a free
* block. */

#define precedingIsFree(X) (_ADMIN_WORD(X).precedingIsFree)
/** The size of the block at X, including the administrative word. */
#define blockSize(X) (_ADMIN_WORD(X).size)
/** A pointer to the block next in memory after the one at X. */
#define followingBlock(X) ((Address) (X) + blockSize(X))

/** If X points to a free block, then the link to the next block in the
* free list is at location X, and a back link to the previous block
* in the free list is at the end of the block pointed to by X.
* If precedingIsFree(X), then the back link for the free block
* that precedes X in memory is immediately before the
* administrative block for X. Therefore, one can find the address
* of the free block that precedes X in memory by the circuitous
* route of picking up this back link and then following the
* forward from there. */

#define freeNext(X) \
((Address*) (X))[0]

#define precedingBackLink(X) \
((Address*) (X))[-2]

#define freePrev(X) \
precedingBackLink(followingBlock(X))

#define precedingBlock(X) \
freeNext(precedingBackLink(X))

Address FREE_LIST;

Initially, the allocation routines reserve a large, contiguous block of storage,
allocating a dummy sentinel block at the high end to prevent the free routine
from attempting to coalesce a newly-freed block with the storage that follows. The
freeNext and freePrev pointers for the remaining initial free block are initialized
to point to the block itself, creating a one-element circular, doubly-linked list.

Allocation. To allocate a block, we use the following procedure (text in italics
for missing code, which is left to the reader to supply).

10.3. DYNAMIC STORAGE ALLOCATION WITH EXPLICIT FREEING 149

S

100

F

1

P

0

0

NEXT

4

PREV S

120

F

0

P

1

100

S

160

F

0

P

0

220

S

24

F

1

P

0

380

NEXT

384

PREV S

32

F

0

P

1

404

S

160

F

1

P

0

436

NEXT

440

PREV S

4

F

0

P

1

596

X Y Z
FREE
LIST

G1 = malloc(96);
X = malloc(115);
Y = malloc(156);
G2 = malloc(19);
Z = malloc(26);
G3 = malloc(155);
free(G1); free(G3); free(G2);

Figure 10.2: The state of the storage allocator after executing the allocations and
frees shown above. Shaded areas are being used by the program; unshaded areas
are used by the storage allocator. The original block of free space was 600 bytes
long. A permanently-allocated 4-byte block at the end is a sentinel that guarantees
that all other blocks have a block following them. Memory addresses relative to
the beginning of the entire chunk of storage are shown above certain boxes. The
quantities used by the storage allocator are labeled ‘S’ for blockSize, ‘F’ for isFree,
‘P’ for precedingIsFree, ‘NEXT’ for freeNext, and ‘PREV’ for freePrev.

150 CHAPTER 10. STORAGE MANAGEMENT

Address malloc(unsigned int N)
{

Address FREE0;
Address result, next, last;

if (FREE_LIST == NULL)
GET_MORE_STORAGE(N, FREE_LIST);

FREE0 = FREE_LIST;
loop {

FREE_LIST = freeNext(FREE_LIST);
if (blockSize(FREE_LIST) >= N + sizeof(AdminWord))

break;
if (FREE_LIST == FREE0) {

GET_MORE_STORAGE(N, FREE_LIST);
return malloc(N);

}
}

Round N upward to an even multiple of sizeof(Address) such that
N + sizeof(AdminWord) ≥ MIN FREE BLOCK.

/* If the remaining free block would be too small, expand the
* request to eat up the entire free block. */

if (blockSize(FREE_LIST) - N - sizeof(AdminWord) < MIN_FREE_BLOCK)
N = blockSize(FREE_LIST) - sizeof(AdminWord);

result = FREE_LIST;
Delete current block from free list
if (blockSize(result) > N + sizeof(AdminWord))

Add the last blockSize(result) - N - sizeof(AdminWord)
bytes of the block at result back to FREE LIST.

isFree(result) = precedingIsFree(result) = 0;
blockSize(result) = N + sizeof(AdminWord);

return result;
}

The statement GET_MORE_STORAGE is intended to obtain a new large area of
storage from the operating system (at least enough for N bytes plus an administrative
word) and link it into the free list, causing malloc to return a null pointer if this is
not possible.

The strategy used above for finding a free area of sufficient size is known as first-
fit ; it finds the first large-enough free block and carves the necessary storage out

10.3. DYNAMIC STORAGE ALLOCATION WITH EXPLICIT FREEING 151

of that. At each new allocation, however, the search starts where the previous one
left off, rather than at a fixed beginning. This turns out to be extremely important
to obtaining good performance. If the search always starts at the same location,
the beginning of the free list soon becomes cluttered with chopped-up blocks that
don’t meet the demands of most requests, but must be skipped over to get to bigger
blocks. The rotating free list pointer overcomes this problem.

Another possible strategy is best-fit : find the closest fit to the requested size. It
is by now well-known, however, that this strategy is expensive (in a simple imple-
mentation, one must look at all free blocks) and in fact harmful, leading to many
small free blocks.

Freeing. To free a block, we coalesce it with any adjacent free blocks and add it
to the free list.

void free(Address X)
{

if (X == NULL || isFree(X))
return;

if (isFree(followingBlock(X))) {
remove followingBlock(X) from FREE LIST;
blockSize(X) += blockSize(followingBlock(X));

}
if (precedingIsFree(X)) {

Address previous = precedingBlock(X);
remove previous from FREE LIST;
blockSize(previous) += blockSize(X);
X = previous;

}
/* NOTE: At this point, X is not adjacent to any free block,
* either before or after it in memory. */

isFree(X) = 1; precedingIsFree(followingBlock(X)) = 1;
Link X into FREE LIST.

}

Ordered free lists. The minimum-sized block in this scheme contains two point-
ers and an administrative word—12 bytes on a Sun-3, for example, corresponding
to an allocation of 8 bytes. On that same machine, the real C library versions of
malloc and free get away with blocks containing only one pointer plus the ad-
ministrative word, single-linking the free list. In order to allow coalescing, they
search the free list for adjacent blocks, and speed this up by ordering the free list by
memory address. Since the search implicitly finds all free blocks, it is unnecessary
to have flags indicating that a block or its neighbor is free. The price, of course, is
a slower free procedure.

152 CHAPTER 10. STORAGE MANAGEMENT

10.3.2 Buddy system method

When there is a single free list to search, the time required to perform allocation
cannot easily be bounded. In some applications, this may be a problem. The buddy
system provides for allocation and freeing of storage in time O(lgN), where N is
the size of storage. It allocates storage in units of 2k storage units (bytes, words,
whatever) for k ≥ k0, where 2k0 storage units is the minimum needed to hold
forward and backward pointers for a free list (this information appears only in free
blocks).

The idea is to treat the allocatable storage area as an array of storage units,
indexed 0 through 2m 1. A block (free or allocated) of size 2k will always start at
an index in this array that is evenly divisible by 2k. Free blocks are only coalesced
with other free blocks of the same size, and only in such a way as to preserve the
property that each free block starts at an index position that is divisible by its size.

For example, suppose that a block of size 16 becomes free and that it starts at
index position 48 in the storage array. This block may be merged with a block of
size 16 that starts in position 32. It may not be merged with a block of size 16
that starts in position 64, because the resulting block would be of size 32, and such
blocks may only start at positions divisible by 32; merging our block at 48 with one
at 64 would result in a block of size 32 that started at position 48, which is not
allowed. We say that the blocks of size 16 at positions 32 and 48 are buddies, while
those at 48 and 64 are not.

Thus, the rule is that a free block may only be coalesced with its buddy (and
only if that block is free). The calculation of one’s buddy’s index is quite easy, if a
bit obscure. The buddy of a block of size 2k at an index X begins at index X ⊕ 2k,
where ‘⊕’ computes the exclusive or of the binary representations of its operands
(the ‘\string^’ operator in C).

Each free block contains forward and backward links for inclusion in a free list.
The system maintains four arrays.

MEMORY is the actual allocatable storage (containing 2m StorageUnits, where
the type StorageUnit is typically something like char).

FREE LIST is an array of FreeBlocks with FREE_LIST[k] being the sentinel
for the list of free blocks of size 2k. Each list is circular and doubly-linked.
Initially, FreeBlock[m] contains the entire block of allocatable storage (of size
2m) and all other free lists contain only their sentinel nodes (are empty, in
other words).

IS FREE is an array of true/false values, with IS_FREE[X] being true iff
X is the index of a free block. Since each element is either true or false,
this array may be represented compactly—perhaps as a bit vector. Initially,
IS_FREE[0] is true and all others are false.

SIZE is an array of integers in the range 0 to m. If there is a block (free or
allocated) of size 2k that begins at location X, then SIZE[X] contains k.

10.3. DYNAMIC STORAGE ALLOCATION WITH EXPLICIT FREEING 153

Because these values tend to be small, and because X will always be divisible
by 2k0 , it is possible to represent SIZE compactly. Initially, SIZE[0] is m.

Allocation. To allocate under the buddy system, we first round the size request
up to a power of 2. If no block of the desired size is free, we allocate a block of
double the size (recursively) and then break it into its constituent buddies, putting
one of them back on the free list and returning the other as the desired allocation.

unsigned int buddyAlloc(unsigned int N)
/* Return the index in MEMORY of a new block of storage at least */
/* N storage units large. */

{
Choose the minimum k ≥ k0 with 2k ≥ N and set N to 2k.

if (k > m)
ERROR: insufficient storage.

if (isEmpty(FREE_LIST[k])) {
unsigned int R = buddyAlloc(2*N);
IS_FREE[R] = TRUE;
SIZE[R] = k;
Add the block at R to FREE LIST[k].
return R+N; /* i.e., the second half of the size 2N block at R */

}
else {

Remove an item, R, from FREE LIST[k].
IS_FREE[R] = FALSE;
return R;

}
}

Address malloc(unsigned int N)
{

return & MEMORY[buddyAlloc(N)];
}

Freeing. To see if a newly-freed block may be coalesced with its buddy, we first
see if the block at the buddy’s location is free, and then see if that block has the
right size (the buddy may have been broken down to satisfy a request for something
smaller).

154 CHAPTER 10. STORAGE MANAGEMENT

/** Free the storage at index L in MEMORY. */
void buddyFree(unsigned int L)
{

int k = SIZE[L];
int N = 1 << k;
unsigned int Lbuddy = L \string^ N;

if (k < m && IS_FREE[Lbuddy] && SIZE[Lbuddy] == k) {
Remove Lbuddy from FREE LIST[k]
IS_FREE[Lbuddy] = FALSE;
if (L > Lbuddy)

L = Lbuddy;
SIZE[L] = k+1;
buddyFree(L); /* recursively free the coalesced block */

}
else {

IS_FREE[L] = TRUE;
Add L to FREE LIST[k];

}
}

void free(Address X)
{

unsigned int L = (StorageUnit*) X - (StorageUnit*) MEMORY;

if (X == NULL || IS_FREE[L])
return;

buddyFree(L);
}

10.3.3 “Quick fit”

The use of an array of free lists in the buddy system suggests a simple way to
speed up allocation and deallocation. When there are certain sizes of object that
you often request, maintain a separate free list for each of these sizes. Requests for
other sizes may be satisfied with a heterogeneous list, as described in the sections
above. Free items on the one-size lists need not be coalesced (except perhaps in
an emergency, when there is insufficient storage to meet a larger request), and no
searching is needed to find an item of one of those sizes on a non-empty list. This
means, of course, that allocation and freeing go very fast for those sizes. The term
quick-fit has been used to describe this scheme.

10.4. AUTOMATIC FREEING 155

10.4 Automatic Freeing

There are two problems with having the programmer free dynamic storage explicitly.
First, it complicates and obscures programs to do so. Second, it is prone to error.

Suppose, for example, that I introduce a string module into C. It provides a type,
String, whose variables may contain arbitrary strings, of any length, and whose
operations allow the programmer to form catenations, substrings, and so forth. I’d
like to use String variables as conveniently as if they were integers. To make good
use of space, it is convenient to use dynamic storage. This presents a problem,
however. In contrast to the situation with int variables, my String variables don’t
entirely vanish when I exit the procedure that declares them. I must explicitly
deallocate them—my string module will have provided a deallocation procedure, of
course, but I (the programmer) must still write something. Worse yet, consider a
procedure such as this.

/** Return the concatenation of the strings in X. */
String concatList(String X[], int N)
{

int i;
String R = nullString();
for (i = 0; i < N; i += 1)

R = concat(R, X[i]);
return R;

}

This seems innocuous, but it is unlikely to work well. The problem is that the
function concat does not know that the storage used by its first operand can be
deallocated immediately after use (since the result of concat is going back into R).
The programmer must explicitly deallocate each intermediate value of R instead,
which will complicate this function considerably.

Perhaps the most common error found in programs that do explicit freeing is the
memory leak : storage that is never deallocated, even after it is no longer needed.
Other errors are possible, as well; attempts to access storage after it has been freed
can lead to extremely obscure errors (I suspect, however, that these bugs are less
common than memory leaks).

These considerations lead us to consider methods for automatically freeing dy-
namic storage that is no longer needed. This generally translates to dynamic stor-
age that is no longer reachable—that the program can no longer reference since no
pointers lead to it (directly or indirectly) from any named variables the program
can access. Such storage is called garbage, and the process of reclaiming it garbage
collection4.

Some assumptions. Automatic storage reclamation generally requires some coöperation
from the compiler and the programming language being used. All of the methods

4Some authors reserve the term “garbage collection” for methods that use marking (see below),
excluding reference counting. Here, I will use the term for all forms of automatic reclamation.

156 CHAPTER 10. STORAGE MANAGEMENT

discussed below follow pointers that they find embedded in dynamically-allocated
objects. In order to do this, they must first be able to find all such pointers. This
requires a certain amount of what we generically call type information; the run-time
routines must be able to find out at least enough about an object’s type to deduce
where its pointer fields are. There are various ways to arrange this.

• The language may have only one kind of dynamically-allocated object, whose
pointers are all in the same places. For example, early Lisp systems had only
cons cells (objects containing only a pair of pointers).

• The language may be strongly typed so that the type of all quantities is known
by the compiler and conveyed somehow (by tables perhaps) to the run-time
storage management routines.

• The system may store type information (indicating the positions of all point-
ers) with every object at some standard location, so that a storage-freeing
routine can acquire this information without knowing anything beforehand
about the program being run.

• The system may store type information in the pointers. Sometimes the pos-
sible addresses in a certain system leave certain bits of each pointer value 0,
so that the runtime system may store useful information in these bits (mask-
ing them out when it really needs the pointer). Another approach is to put
all objects of a particular type at particular ranges of addresses, so that by
looking at a pointer’s value, a storage deallocator may deduce its type.

In what follows, I’ll just assume we have some way of finding this information,
without going into particulars.

Automatic storage reclamation also requires that the values stored in pointers
be under fairly strict control. A language or language implementation that allows
arbitrary integers in pointer variables can seriously confuse a procedure that is
trying to follow a trail of pointers through a data structure. In Lisp, for example,
all pointer variables (that is to say, all variables) are initialized to values that the
run-time system understands (when a variable is “undefined” or “unbound,” it
contains a special recognizable “undefined” value, even if the programmer can’t
mention such a thing directly). One can store numbers into variables in Lisp, but
the representations of these numbers is such that they are always distinguishable
from pointers5.

Finally, certain storage management schemes require that we be able to find all
roots of dynamic data structures. A root, in this context, is a named variable (either
static or local) that a program can possibly mention, and therefore might get used
by the program. There various ways of insuring that a de-allocation routine (the
usual customer) can find all roots. The compiler can leave around the necessary

5For example, in one common technique, small integers (say in the range 0–1023) are represented
as in most C implementations, but any other integers are actually pointers to structures (called
“bignums”). Arithmetic operations always check to see if they have created a big enough number
to require allocation of a new dynamic structure.

10.4. AUTOMATIC FREEING 157

information. In Lisp systems, the execution-time stacks contain only pointers, and
therefore the roots simply comprise the entire stack, the registers, and a few fixed
static variables6.

We can consider all the dynamic data in a program as a giant graph structure,
where objects are the vertices and pointers are the edges. Any dynamically-allocated
object that is not reachable from some root will never again be used by the program,
and is therefore garbage. The problem is to find this garbage and free it.

10.4.1 Reference counting garbage collection

One way to determine when storage can be deallocated is to keep track of how many
copies there are of a pointer to a particular object. When this number reaches 0,
the object can no longer be reached from any root, and may therefore be deleted.
The most convenient technique is to put a reference count in each object (initially
0). Whenever the compiler encounters an assignment of one variable to another,

X ← Y;

it generates code with the following effect.

if (Y is a non-null pointer)
increment the reference count of Y;

if (X contains a non-null pointer) {
decrement the reference count of X;
if (reference count of X == 0)

freeStructure(X);
}
X = Y;

/** Free the object pointed to by X, decrementing the reference
* counts of any of its fields. */
void freeStructure(Address X)
{

for each field, F, in the object pointed to by X {
if (F contains a non-null pointer) {

decrement the reference count of F;
if (reference count of F == 0)

freeStructure(F);
}

}
}

The assignment procedure must be used not only for explicit assignments, but
also when a function exits (all local variables of the function, including by-value
parameters, are in effect assigned NULL), when a value from a variable is passed

6For example, there is typically have one static variable that points to a hash table containing
all symbols.

158 CHAPTER 10. STORAGE MANAGEMENT

as a parameter to a function (in effect, this is an assignment of value to a new
variable), when a variable’s value is returned from a function (if it is a pointer, this
creates a temporary copy of it), and when a function’s value is ignored (if it is a
pointer, this destroys a copy of it).

Reference counting is used, for example, in the UNIX file system. The objects
that contain pointers are directories. They contain pointers (“hard links”) to the
actual files (“inodes”). Removing a file (the rm command) merely removes a certain
directory entry and the pointer it contains. Only if this is the last pointer does the
file really get deleted.

There is a problem with reference counting: circular structures (like doubly-
linked lists) will always have pointers to themselves, even when they cannot be
reached from a root7. In programs or languages that do not allow circular struc-
tures, this poses no particular problem. Otherwise, the system must make some
other provision for circular structures (such as periodic marking garbage collection,
described below, or ‘planned’ periodic crashing).

In addition, reference counting (at least in the naive form described here) re-
quires a great deal of work. Each assignment performs incrementing and decrement-
ing, which considerably increases the cost of so otherwise simple an operation. The
remaining automatic schemes perform their collection all at once, generally avoiding
much of the work of done by reference-counting techniques.

10.4.2 Mark-and-sweep garbage collection

Providing garbage collection of circular structures is a nice practical application of
graph traversal. To find the currently-reachable objects, we can perform depth-
first traversals starting from each of the roots, where visiting a node does nothing
but mark it (the marks may either be on the objects themselves or in a separate
bit vector, indexed by object addresses). Doing this clearly requires both that the
storage de-allocator be able to find all the pointers in any given object, but also
(unlike reference counting) that it be able to find all roots. The objects marked
by this traversal (known as the marking phase) are precisely the reachable objects;
all others are garbage and may be freed. The procedure clearly is not confused by
unreachable circular structures—it simply never gets to them.

Assume that all dynamically-allocated objects are laid out consecutively in mem-
ory (as is usually the case) and that (as before) we can obtain the size of each object
once we have a pointer to it. Then we can collect garbage by means of a sweep
through memory:

7The UNIX directory structure is doubly-linked, which is why one must delete directory struc-
tures starting from the leaves and working up, breaking the double-links on the way up.

10.4. AUTOMATIC FREEING 159

/** Return a list of all unmarked objects between addresses L and
* U, inclusive. All objects are unmarked at the conclusion. */
ListOfObjects sweepGarbage(Address L, Address U)
{

ListOfObjects freeList;
Address m;

freeList = nullList();

for (m = L; m <= U; m += objectSize(m)) {
if (! MARK(m)) {

(Optional) coalesce the object at m with any following
free object.

Place the object at location m of size objectSize(m)
on freeList.

SET_MARK(m, FALSE);
}

}

return freeList;
}

As you might expect, objectSize applied to an Address gives the size of the object
at that address, while MARK and SET_MARK manipulate the mark bit associated
with it. Figure 10.3 gives a sample configuration of objects just before a garbage
collection. Figure 10.4 shows how this might be laid out in storage before sweeping
and after marking, and Figure 10.5 shows the configuration after sweeping.

The optional coalesce operation is inappropriate for applications in which there
are only a few sizes of objects. In Lisp, for example, most allocations tend to be
cons cells, and coalescing is not a good idea. When sizes are many and varied,
coalescing has the same advantages as in the previous sections on explicit freeing.

The system will typically perform a garbage collection whenever an attempt to
allocate storage fails (no sufficiently-large block on the free list). The time required
to sweep memory is proportional to the number of objects in it, while the time
required for marking is proportional to the total number of roots and of pointers in
reachable objects (the latter correspond to the number of edges in a graph).

10.4.3 Copying garbage collection

In mark-and-sweep garbage collection, as for explicit storage allocation, storage
can become increasingly fragmented. When there are few distinct object sizes,
this is not a problem, of course. Otherwise, one way to overcome this difficulty
is to use a type of garbage collection that copies reachable objects rather than
collecting unreachable ones, in the process compressing out unallocated (garbage)
space between reachable objects. To do this, we divide storage into two areas,
called to-space and from-space. Before a garbage collection, all dynamic storage

160 CHAPTER 10. STORAGE MANAGEMENT

Roots

5 E B G

D
7

C
42
A

F

Figure 10.3: An example of dynamically-allocated storage. Labels above the upper
left corners of objects are for reference only; they are not variable names. The Roots
include all the named variables (their names are not shown). Objects contain either
pointers, nulls (crossed out), or other things (represented by numbers here). The
objects labeled C, A, and F are unreachable garbage; other objects are reachable
and must be preserved during garbage collection.

42
A φ1

D
B*

G F
C

A φ1

φ0 D*
7 G D

E* F
C

G*
E

Figure 10.4: A possible layout of the objects depicted in Figure 10.3 just after the
marking phase and before the sweep of a garbage collection. Marked nodes are
indicated by asterisks. The reference labels from the preceding figure appear at the
upper left of each object. To avoid a nest of arrows, pointers are represented by the
reference labels of the objects they point to. Objects labeled φi are on the free list,
which starts at φ0. Presumably there is about to be a garbage collection because
the program has made a request for an object larger than two words.

10.4. AUTOMATIC FREEING 161

(a)
φ′

4

φ′
4

φ′
3

D
B

G φ′
3

φ′
2

φ′
2

φ′
1 D

7 G D
E

φ′
1

φ′
0 G

E

(b)
φ′

2

D
B

G φ′
2

φ′
1 D

7 G D
E

φ′
1

φ′
0 G

E

Figure 10.5: State of storage after a sweep that starts with the situation in Fig-
ure 10.4 (a) without coalescing and (b) with coalescing of adjacent free areas. The
new free list starts at φ′

0.

is in from-space and to-space is empty. The effect of collection is to move the
reachable objects in from-space to to-space, changing all pointers in the roots and
in the objects themselves to point to the new copies of the objects. At the next
garbage collection, to-space and from-space change places, and the contents of what
was from-space are simply ignored.

Updating the pointers correctly requires one new trick. If, as we traverse the
objects copied from from-space, we encounter a pointer to an object we have pre-
viously copied, it is necessary to find the new location of that object. The usual
method is to leave behind a forwarding pointer in the old object pointing to the
new copy (since the old object’s contents have been copied to its new location, the
system is free to use its storage for such purposes). When we encounter a marked
object, we know that it has been copied and that it contains a forwarding pointer,
which may use to update the value of the pointer we are processing. The resulting
program is given below. Assume that FETCH(X) fetches the pointer value at the
Address X in memory, and SET(X,V) sets the contents of Address X in memory to
V (it doesn’t change X itself). Figure 10.6 illustrates copying garbage collection for
the objects shown in Figure 10.3.

162 CHAPTER 10. STORAGE MANAGEMENT

static Address to_space, from_space;
/** The first free location in to_space **/
static Address nextFree;

void copyReachables(void)
{

Address toDo;

Swap from space and to space.
nextFree = to_space;

for each root, R {
if (R is a pointer into from_space)

R = copyObject(R);
}
/* All roots contain their correct new values */

for (toDo = to_space; toDo < nextFree; toDo += sizeof(Address)) {
/* The copied objects between to_space and toDo contain
* correct pointers to new objects in to_space. Objects between
* toDo and nextFree contain only pointers into from_space. */

if (toDo is the address of a pointer field in to_space) {
if (FETCH(toDo) is a pointer into from_space) {

if (MARK(FETCH(toDo)))
/* FETCH(FETCH(toDo)) is a forwarding pointer */

SET(toDo, FETCH(FETCH(toDo)));
else

SET(toDo, copyObject(FETCH(toDo)));
}

}
}

}

/** Copy the from_space object X into to_space, mark X, leave a
* forwarding pointer, and return the Address of the copy */

static Address copyObject(Address X)
{

Address newObject = nextFree;
nextFree += objectSize(X);
copy objectSize(X) bytes from location X to location newObject
SET(X, newObject); SET_MARK(X);
return newObject;

}

As you can see from Figure 10.6, the free storage in to-space is contiguous after

10.4. AUTOMATIC FREEING 163

garbage collection. The “good” storage has all been collected into one contiguous
area, leaving the rest free (this sort of garbage collecting is therefore sometimes
called compacting). This fact makes subsequent storage allocation extremely easy
and fast. There is no free list to search; to allocate n bytes of storage, we simply
increment the pointer nextFree by n.

Of course, you may well object to the fact that from-space (one half of allocatable
storage) is unused between garbage collections. While this is a disadvantage, it is
not as bad as it seems. In particular, because of virtual memory, it is not necessary
to waste half of the computer’s physical memory. Further improvement is possible
through the technique of generational garbage collection.

10.4.4 Generational garbage collection

Copying garbage collection shares one problem with mark-and-sweep: long-lived
objects are repeatedly traversed, even though they tend not to change very quickly
after they are allocated and initialized. Also, in typical programs written for lan-
guages like Lisp, objects that become garbage often tend to do so early in their
lifetimes. This suggests that it would be nice to restrict garbage collection to young
(recently-allocated) objects, ignoring ones that have remain reachable for a certain
period of time. With some care, this can be done; the result is known as generational
garbage collection.

The idea is to divide objects into generations, each in a separate area of memory.
Objects are initially “born” into the youngest generation. When the to-space for
this generation fills up, it is garbage collected using copying, but pointers into older
generations (whose objects were allocated before those in the youngest generation)
are mostly ignored (i.e., not traversed). Objects that survive one or more of these
collections of the youngest generation (details vary from system to system) are
tenured—that is, copied into the to-space for the next-older generation. Because
objects tend to die young, this older generation fills up much more slowly than
the youngest. It is also made to be much larger than the youngest generation, so
that the need to perform garbage collection for the older generations is relatively
uncommon.

I said that pointers to older objects are “mostly” ignored because older objects
generally do not point at younger ones, and so need not be traversed in order to
mark and copy younger objects. The reason should be clear—after one allocates an
object, one initializes its fields to point to objects that already exist and are therefore
older than it is. The only time an object contains a pointer to something younger
is when one of its fields is assigned to after its initial allocation and initialization.
Statistics show these events to be relatively rare in Lisp programs, for example
(cons is a common operation; set-car! is not). Therefore, systems that use gen-
erational garbage collection simply keep an array (called a “remembered list”) of
pointers to old objects that have had young pointers assigned to their fields. The
young-generation pointers in these objects are then counted as roots during garbage
collection of the youngest generation.

Generational garbage collection has proven to be extremely effective. In one

164 CHAPTER 10. STORAGE MANAGEMENT

Roots

B
5

E

from: 42
A

D
B

G F
C

A
D

7 G D
E F

C
G

E

to:

(a)

Roots

B’
5

E’

from: 42
A

B’
B*

G F
C

A
D

7 G E’
E* F

C
G

E

to: D
B’

G D
E’

(b)

Roots

B’
5

E’

from: 42
A

B’
B*

G F
C

A D’
D*

7 G E’
E* F

C G’
G*

E

to: D’
B’

G’ D
E’ D’

7 G
G’

E

(c)

Roots

B’
5

E’

from: 42
A

B’
B*

G F
C

A D’
D*

7 G E’
E* F

C G’
G*

E

to: D’
B’

G’ D’
E’ D’

7 G’
G’

E’

(d)

Figure 10.6: Example of copying garbage collection. (a) shows the configuration of
from-space and to-space just before copying the roots. The arrow indicates the po-
sition of the toDo pointer and the area to the right of nextFree is shaded. (b) shows
the configuration immediately after the roots are copied. Primes after a label distin-
guish a to-space copy from the from-space original. Marked nodes in from-spaced
are marked with asterisks; their first words have been replaced with forwarding
pointers. (c) shows the configuration immediately after copyReachables finishes
processing the pointers in object B’. (d) shows the final configuration. Nothing
further is copied after (c); the rest of the processing involves replacing from-space
pointers with the appropriate forwarding pointers.

10.4. AUTOMATIC FREEING 165

Smalltalk system developed at Berkeley, generational garbage collection accounted
for only about 3% of the total execution time.

10.4.5 Parallel garbage collection

By a simple trick, the copying garbage collectors described above can be made to
run simultaneously with the program that is generating garbage (which is called the
mutator).

The trick does require some coöperation from the operating system: it must be
possible to temporarily read protect blocks of memory under program control so that
when the mutator attempts to read from one of these blocks, it will be interrupted
and made to do something else. Our Unix implementation, for example, provides a
function mprotect that allows a program to set the protection of blocks of memory
in units called pages.

The technique for getting a parallel algorithm now follows from a few of obser-
vations.

• Immediately after the roots are moved, all pointers in the roots are into to-
space.

• A program can only read from memory locations a root points to (to com-
pute something like, e.g., X->tail->tail, the computer in effect first reads
X->tail into a register, which is one of the roots).

• The area of to-space that can contain unprocessed pointers (i.e., pointers to
old, uncollected objects in from-space) is between toDo and nextFree while
copying garbage collection is in progress.

Therefore, if the garbage collector protects the storage between toDo and newFree
so that whenever the mutator tries to read from there, it is interrupted, we can
make sure that the mutator never sees an old, unprocessed pointer into from-space.
Whenever it tries to read such a pointer from to-space, it is interrupted, and can
be made to wait while the pointers area it is trying to read are processed.

