
1

CS61C Midterm 2 Review

Summer 2004
Pooya Pakzad

Ben Huang
Navtej Sadhal

MIPS Instruction Formats

Two Examples: Branches and Jumps
1. Branches (I-format): How do you determine a branch

address given a branch instruction?

2. j and jal (J-format): How do you determine a jump
address given a branch instruction?

opcode (6) rs (5) rt (5) immediate/offset (16)

opcode (6) jump target (26)

MIPS Instruction Formats

Two Examples: Branches and Jumps
1. Branches (I-format): How do you determine a branch

address given a branch instruction?

next PC = (PC + 4) + (<signed immediate> x 4)

2. j and jal (J-format): How do you determine a jump
address given a branch instruction?

next PC =

four leftmost bits of current PC

jump target (26) 00

MIPS Instruction Formats

One More Examples: Immediates

What is the difference between the immediate field of
addiu and ori?

The immediate field of the addiu is signed whereas the
immediate field of the ori is unsigned.

(How does this apply to the MIPS CPU you have been
learning about?)

opcode (6) rs (5) rt (5) immediate/offset (16)

MIPS Pseudoinstructions
There are some assembly instructions in MIPS that don’t

have a 1-to-1 correlation with machine instructions.

• During the assembly stage, pseudoinstructions are
translated into non-pseudoinstructions.

.c .s .o a.out

.o

Non-Pseudoinstructions are known as TAL instructions.

compiler assembler linker

MIPS Pseudoinstructions

Translate all pseudoinstructions to TAL instructions.

.data

x: .word 2

.text
main: la $t0, x

lw $t0, 0($t0)
loop: addiu $t1, $t0, 0x1FFFF

mul $t0, $t0, $t1

li $t2, 0x1FFFF
beq $t0, $t2, loop

li $t2, 1

2

MIPS Pseudoinstructions

Translate all pseudoinstructions to TAL instructions.
.data

x: .word 2

.text
main: lui $t0, l.x # la $t0, x

ori $t0, $t0, r.x
lw $t0, 0($t0)

loop: lui $at, 0x1 # addiu $t1, $t0, 0x1FFFF
ori $at, 0xFFFF
addu $t1 $t0, $at
mult $t0, $t1 # mul $t0, $t0, $t1
mflo $t0
lui $t2, 0x1 # li $t2, 0x1FFFF
ori $t2, 0xFFFF
beq $t0, $t2, loop
addiu $t2, $0, 1 # li $t2, 1

IEEE Floating Point Representation

Exp (11) Significand (52)S

Exp (8) Significand (23)S

IEEE Single Precision Floating Point

IEEE Double Precision Floating Point

(-1)S x (1.Significand) x 2Exp-127

(-1)S x (1.Significand) x 2Exp-1023

Why is there a bias? Where is there an assumed 1?

Floating Point Thought Questions

For IEEE Single/Double Precision Floating Point Rep:

• How many numbers can you represent?

• What is the smallest/largest positive numbers you can
represent?

• How do you compare two floating point numbers?

• How do you add/subtract two floating point numbers?

Floating Point Thought Questions

For IEEE Single/Double Precision Floating Point Rep:

• True or False: For every 32-bit integer, there is a floating
point number that exactly equals that integer (and vice
versa).

• What is the largest integer you can cast into a floating point
number and back again, and still get the same value?
(integer � floating point � integer)

• Etc…

Floating Point Thought Questoins

For IEEE Single/Double Precision Floating Point Rep:

• Also consider:

• Changing IEEE floating point representation?

• Inventing a new 8-bit floating point representation?

• Changing the number of bits in the significand and
exponent?

Floating Point Values

Fill in the table for the value of each row
(given the exponent and significand):

+zero000000000

denormalizedNot 000000000

normalizedAnythingAnything Else

NaNNot 011111111

+infinity011111111

ValueSignificandExponent

Normalized: (-1)S x (1.Significand) x 2Exp-Bias

Denormalized: (-1)S x (0.Significand) x 21-Bias

3

Boolean Algebra

• Combinational Logic
• Truth Tables
• Sum of Products

• Algebraic Simplification
• Programmable Logic Arrays

Truth Tables

• Construct a truth table
for a 3 input, 1 output
logic function that
determines if the
majority of the bits are
0.

0111

0110

0101

1100

0011

1010

1001

1000

OutputInput

Sum of Products

• To find the sum of products, you AND
together the bits of each line that has 1 on
the output and then OR the terms
together.

• Find the sum of products for the previous
function:
S = A’B’C’ + A’B’C + A’BC’ + AB’C’

Simplify using Boolean Algebra

• S = A’B’C’ + A’B’C + A’BC’ + AB’C’
• S = A’B’ + A’B’ + B’C’

Finite State Machines

• FSMs contain a finite number of states,
inputs and outputs.

• Can be represented on with a state
transition diagram:

state1 state2

Input1/output1

Input1/output2

Finite State Machines

• Outputs:
– State determined: output(currentState);

outputs can be marked on states (Moore
Machine)

– State and input determined:
output(currentState, input); outputs marked on
transition arcs (Mealey Machine)

4

Finite State Machine

• Construct a state transition diagram for a 2
bit accumulator that takes a 2 bit input. It
will wrap back around on overflow.

00

11 10

01

00 00

00 00

01

01 01

01

10
10

10

10
11

11

11

11

Finite State Machines

• Is the output state-determined? Yes
• Write a truth table for the nextState function

101111001101

011011111001

000111100101

110011010001

011110111100

001010101000

110110010100

100010000000

nextStateInputcurStatenextStateInputcurState

Verilog

• Hardware description language
– Time is important; everything happens in

parallel

– Pure structural Verilog has no concept of
sequence or procedure. It is only a description
of hardware

Structural Verilog

• Write a 3 bit parity check module using
only primitive AND and OR gates in
structural Verilog; include 1ns gate delay:
– List inputs and outputs (module header):

module parity(S, A, B, C);
input A, B, C;
output S;

– Find the boolean equation:
• P = A’B’C + A’BC’ + AB’C’ + ABC

Structural Verilog
module parity(S, A, B, C);

input A, B, C;

output S;

wire w0, w1, w2, w3;

and #1

(w0, ~A, ~B, C), (w1, ~A, B, ~C),

(w2, A, ~B, ~C), (w3, A, B, C);

or #1

(S, w0, w1, w2, w3);

endmodule

Is there a simpler way?
xor(S, A, B, C);

Adding State

• Write a module that takes 3 bits of data and 1
parity bit on every clock cycle and checks if the
parity matches (error checking). If ever two
mismatches in a row occur, the failure bit
(output) goes high immediately. Include 1ns gate
delay on each gate. You may use only structural
Verilog and assume a DFF module exists:
module DFF(CLK, RST, Q, D);
//clk to Q time is 1ns

5

Adding State
module parityChecker(CLK, RST, data, parity, fail);

input [2:0] data;

input parity;

output fail;
wire w0, w1, w2;

xor #1 (w0, data[2], data[1], data[0]);
xor #1 (w1, w0, parity);
DFF myff (.CLK(CLK), .RST(RST), .Q(w2), .D(w1));
and #1 (fail, w2, w1);

endmodule

Verilog testbench

• Write a testbench for the parityChecker:
module testParityChecker;

reg [2:0] data;
reg parity, fail_exp, CLK=0, RST=1;
wire fail;

parityChecker(CLK, RST, data, parity, fail);

initial repeat(12) #10 CLK=~CLK;

initial begin
RST=1;
#15 RST=0; data=3’b101; parity=0; fail_exp=0;
#20 data=3’b111; parity=1; fail_exp=0;
#20 data=3’b000; parity=1; fail_exp=0;
#20 data=3’b110; parity=1; fail_exp=1;
#20 data=3’b011; parity=0; fail_exp=0;

end
initial repeat(6) begin

#14 $display(“data: %b, parity:%b, fail; %b, fail_e xp:
%b”, data, parity, fail, fail_exp);

#6
end

endmodule2

Dataflow Verilog

• Dataflow Verilog uses continuous assigns.
It has the same effect as structural verilog.
– Left side of assignment must be a wire

– Right side can be any signal
– Behavioral operators are allowed on right side

– Syntax is like an assignment in C
• But behavior is like structural Verilog!

Dataflow Verilog

• Write the original parity module using
dataflow Verilog without using ^:
module parity(S, A, B, C);

input A, B, C;

output S;

assign S = (~A && ~B && C) || (~A && B && ~C) ||
(A && ~B && ~C) || (A && B && C);

endmodule

Dataflow Verilog

• What is a simple way to create a
multiplexor on the fly using dataflow
Verilog?

A

B

X

S

assign X = S ? B : A

