
1

CS61C Midterm 3 Review

Summer 2004
Ben Huang

Pooya Pakzad
Navtej Sadhal

Overview

• CPU Design
• Pipelining
• Cache

CPU Design CPU Design

CPU Design CPU Design

What changes need to be made to our CPU if we wanted
to remove the ability to specify an offset for memory
access instructions.

So the instruction:
lw $t0, 12($t1)

would become:
addi $at, $t1, 12
lw $t0, $at

What change could you make to the datapath to improve
latency?

2

CPU Design

Combine ALU and memory stages in the datapath for a
total of 4 stages because no instruction needs all 5

stages now.

CPU Design

What changes need to be made to our CPU if we wanted
to add the instruction branch and increment (bincr):

bincr $t0, $t1, immed

that branches (unconditionally) to PC+4+(immed*4) and
increments $t1 by $t0.

CPU Design

Assume a single cycle datapath:
In order to unconditionally branch, add a control signal
(called uncondbranch) that is high on a bincr instruction.
Or this signal with PCSrc and send the output as the
select signal for the mux that determines whether we
choose PC+4 or the branch PC.

In order to increment $t1 by $t0, let $t0 be rs and $t1 be
rt (this is obviously an I-format instruction). Then
choose: RegDst = 0, ALUSrc = 0, ALUOp = add,
MemtoReg = 0, MemRead/Write = 0, and RegWrite = 1

CPU Design

What changes need to be made to our CPU if we wanted
to add the instruction test and set (tas):

tas $t0, immed($t1)

that loads the value at address (immed+$t1) into $t0,
and sets the same memory location to 1.

CPU Design

Assume a single cycle datapath:
This is just like a lw (all the signals are the same), except
MemWrite is also high because we are writing to
memory. We also need (1) a mux before the port
writeData (in the memory module) to choose between
the value 1 or readData2 and (2) a control signal to
select which input to choose.

What is required of memory in order for this to work on
the single cycle datapath? What would happen if we
considered the pipelined datapath and we were required
to read/write to memory in the MEM stage?

Pipeline

• IF | ID | EX | MEM | WB
• Pipelining allows us to decrease critical

path decreasing clock cycle time
– Increases throughput

– But also increases latency

3

Pipeline

• Insert nop instructions to make this code safe for a pipeline without
forwarding or hazard detection. Assume the register file is written on
the negative edge of the CLK and branches are resolved in the
second stage. The following code is designed for the single cycle
MIPS processor:
lw $t2, 4($0)

addi $t4, $t2, 1

addi $t3, $t3, 1

addi $t0, $0, 20

addi $t0, $t0, 4

lw $t1, 0($t0)

beq $t0, $t1, L1

add $t0, $t0, $t1
add $t3, $t2, $t1

sw $t0, 4($t0)
lw $t2, 4($t0)

beq $t2, $0, L2

Pipeline

• Insert nop instructions to make this code safe for a pipeline without
forwarding or hazard detection. Assume the register file is written on
the negative edge of the CLK and branches are resolved in the
second stage. The following code is designed for the single cycle
MIPS processor:

nop
nop

beq $t0, $t1, L1
nop

add $t0, $t0, $t1
add $t3, $t2, $t1

nop

sw $t0, 4($t0)
lw $t2, 4($t0)
nop

nop

beq $t2, $0, L2

nop

lw $t2, 4($0)

nop

nop

addi $t4, $t2, 1

addi $t3, $t3, 1

addi $t0, $0, 20

nop

nop

addi $t0, $t0, 4
nop

nop

lw $t1, 0($t0)

Pipeline

• Now assuming there is forwarding but no hazard detection, remove
any nop instructions you can:

nop
nop

beq $t0, $t1, L1
nop

add $t0, $t0, $t1
add $t3, $t2, $t1

nop

sw $t0, 4($t0)
lw $t2, 4($t0)
nop

nop

beq $t2, $0, L2

nop

lw $t2, 4($0)

nop

nop

addi $t4, $t2, 1

addi $t3, $t3, 1

addi $t0, $0, 20

nop

nop

addi $t0, $t0, 4
nop

nop

lw $t1, 0($t0)

Pipeline

• Insert nop instructions to make this code safe for a pipeline without
forwarding or hazard detection. Assume the register file is written on
the negative edge of the CLK and branches are resolved in the
second stage. The following code is designed for the single cycle
MIPS processor:

sw $t0, 4($t0)
lw $t2, 4($t0)
nop

nop

beq $t2, $0, L2

nop

lw $t2, 4($0)

nop

addi $t4, $t2, 1

addi $t3, $t3, 1

addi $t0, $0, 20

addi $t0, $t0, 4
lw $t1, 0($t0)
nop
nop

beq $t0, $t1, L1
nop
add $t0, $t0, $t1
add $t3, $t2, $t1

Pipeline

• Now reorder the instructions to eliminate the existing nop
instructions

sw $t0, 4($t0)
lw $t2, 4($t0)
nop

nop

beq $t2, $0, L2

nop

lw $t2, 4($0)

nop

addi $t4, $t2, 1

addi $t3, $t3, 1

addi $t0, $0, 20

addi $t0, $t0, 4
lw $t1, 0($t0)
nop
nop

beq $t0, $t1, L1
nop
add $t0, $t0, $t1
add $t3, $t2, $t1

Pipeline

• Now reorder the instructions to eliminate the existing nop
instructions

sw $t0, 4($t0)
lw $t2, 4($t0)
add $t3, $t2, $t1

nop

beq $t2, $0, L2

nop

addi $t0, $0, 20

addi $t0, $t0, 4
lw $t1, 0($t0)
lw $t2, 4($0)

addi $t3, $t3, 1

beq $t0, $t1, L1
addi $t4, $t2, 1
add $t0, $t0, $t1

4

Caches

• Memory Hierarchy
• Spatial Locality, Temporal Locality
• Cache Parameters

– Associativity

– Block Size
– Number of lines

Determining Cache Parameters

• Determine the geometry of this cache given the following access times (in
ns) for iterations through an array with the specified size and stride:

197980818182513528512k

202281788280523627256k

2120807982533429128k

2281828152352864k

21212022212232k

19211821242316k

2322191824238k

2019202220214k

256k128k64k2k64321684

Stride size (bytes)

A
rr

ay
 S

iz
e

(b
yt

es
)

Determining Cache Parameters

• Hit Time: ~20ns
• Miss Time: ~80ns

197980818182513528512k

202281788280523627256k

2120807982533429128k

2281828152352864k

21212022212232k

19211821242316k

2322191824238k

2019202220214k

256k128k64k2k64321684

Stride size (bytes)

A
rr

ay
 S

iz
e

(b
yt

es
)

Determining Cache Parameters

• Cache Size: What’s the biggest array that always hits?

197980818182513528512k

202281788280523627256k

2120807982533429128k

2281828152352864k

21212022212232k

19211821242316k

2322191824238k

2019202220214k

256k128k64k2k64321684

Stride size (bytes)

A
rr

ay
 S

iz
e

(b
yt

es
)

Determining Cache Parameters

• Cache Size: What’s the biggest array that always hits?

197980818182513528512k

202281788280523627256k

2120807982533429128k

2281828152352864k

21212022212232k

19211821242316k

2322191824238k

2019202220214k

256k128k64k2k64321684

Stride size (bytes)

A
rr

ay
 S

iz
e

(b
yt

es
)

Cache Size: 32kB

Determining Cache Parameters

• Block Size: What’s the smallest stride size that always misses?

197980818182513528512k

202281788280523627256k

2120807982533429128k

2281828152352864k

21212022212232k

19211821242316k

2322191824238k

2019202220214k

256k128k64k2k64321684

Stride size (bytes)

A
rr

ay
 S

iz
e

(b
yt

es
)

Cache Size: 32kB

5

Determining Cache Parameters

• Block Size: What’s the smallest stride size that always misses?

197980818182513528512k

202281788280523627256k

2120807982533429128k

2281828152352864k

21212022212232k

19211821242316k

2322191824238k

2019202220214k

256k128k64k2k64321684

Stride size (bytes)

A
rr

ay
 S

iz
e

(b
yt

es
)

Cache Size: 32kB Block Size: 32B

Determining Cache Parameters

• Associativitiy: What multiple of stride size is the array size when we stop
missing and start hitting again?

197980818182513528512k

202281788280523627256k

2120807982533429128k

2281828152352864k

21212022212232k

19211821242316k

2322191824238k

2019202220214k

256k128k64k2k64321684

Stride size (bytes)

A
rr

ay
 S

iz
e

(b
yt

es
)

Cache Size: 32kB Block Size: 32B

Determining Cache Parameters

• Associativitiy: What multiple of stride size is the array size on the last stride
size that misses every access?

197980818182513528512k

202281788280523627256k

2120807982533429128k

2281828152352864k

21212022212232k

19211821242316k

2322191824238k

2019202220214k

256k128k64k2k64321684

Stride size (bytes)

A
rr

ay
 S

iz
e

(b
yt

es
)

Cache Size: 32kB Block Size: 32B
Associativity: 2 way

Cache Geometry and Addressing

• How do we divide up the address into index, tag,
byte offset, and word offset for the preceding
cache given a 32 bit word aligned address?
– 32kB size, 32B blocks, 2-way associative

31 0

Cache Geometry and Addressing

• How do we divide up the address into index, tag,
byte offset, and word offset for the preceding
cache given a 32 bit word aligned address?
– 32kB size, 32B blocks, 2-way associative

Tag (18)

31

BOWO(3)Index (9)

012451314

Cache Behavior

• Given the preceding cache (32kB size, 2-
way associative, 32B blocks, LRU
replacement), indicate whether the
following accesses will hit or miss and the
type of miss:

08 40 80

Miss type:

H/M:

40108008800040004400Address

hex, byte:

6

Cache Behavior

• Given the preceding cache (32kB size, 2-
way associative, 32B blocks, LRU
replacement), indicate whether the
following accesses will hit or miss and the
type of miss:

Conf

M

4

H

8

Com

M

40

Com

M

80

ConfComComComMiss type:

MHMMHMH/M:

4010800880004000440Address

hex, byte:

