CS 61C (Clancy) Scheme summary
Spring 2002

Here's a brief summary of Scheme for the purposes of project 1.

Scheme data

There are two main data types in Scheme: symbols (which include numbers), and

lists. A list is displayed with parentheses enclosing the list elements, for example:
(a b 3)

A list may be empty; the empty list, displayed as (), is named NIL. List elements may
also be lists themselves, for example:

((ab) (x () (345)))

Evaluation of Scheme expressions

A Scheme expression is either a symbol or a list that may be provided as input to the
interpreter. The interpreter executes a loop with the following steps:

1. read the next symbol or list from the user;

2. evaluate it;

3. print the result.

Evaluation is conceptually a big switch:

1. A numeral’s value is the corresponding numeric value.

2. A symbol’s value is what it gets initialized to via the define function (see below). If
the symbol has not been provided as an argument to define, the error message
“undefined variable” results.

3. A quoted expression’s value is the expression itself, taken literally. For example,
the value of *(a b) is the list (a b). Within a quoted expression, the quote trans-
lates to a call to the function quote; thus "(a b *(x y)) would evaluate to the list

(a b (quote (x y))).

4. A parenthesized expression is evaluated differently, depending on whether or not
it is a special form. In a special form, the word following the left parenthesis is
either quote or define.

The quote function takes a single argument, the “quoted” expression; the value of
a call to quote is the quoted expression. Thus the value of the expression
(quote (a b)) is the list (a b).

The define function declares and initializes a variable. The variable declared/ini-
tialized is the first argument of define; the value it's initialized to is the result of
evaluating the second argument. If a variable is used before it appears in a define
expression, an “undefined variable” error message results. A second define for a
variable merely replaces the value associated with that variable.

5. Otherwise, the first thing after the left parenthesis must name one of the func-
tions +, cons, car, or cdr, and the remaining things that precede the right paren-
thesis are arguments. The value is computed by recursively evaluating the
arguments, then applying the function to them.

1

CS 61C (Clancy) Scheme summary
Spring 2002

Builtin functions

The cons function (short for “construct”) takes two arguments, a Scheme expression
and a Scheme list. It returns a pair whose “car” (first element) is the value of the first
argument and whose “cdr” (second element) is the value of the second argument. A
pair whose second element is a list is itself a list. Thus lists may be defined recur-
sively:

A list is either empty—printed as ()—or the result of evaluating a call to cons
with a list as the second argument.

A pair that’s not a list is displayed with a dot between the elements of the rightmost
cons.

Here are some examples.

expression displayed value
(cons 1 (cons 2 3)) (1 2. 3
(cons 1 '(2 3)) (1 2 3)
(cons "a '"(b c)) (a b c)
(cons '"(b c) '(a x)) ((b ¢c) ax)

Note that leaving out the quotes in (cons 'a *(b c)), thus trying to evaluate the
expression (cons a (b ¢)), would result in trying to evaluate the symbol a, which is
fine if a has been define’'d, and the expression (b c), which is a call to the function
named b and is thus not allowed in this project.

The car and cdr functions each take a pair—the result of some cons operation—as
argument, and return the first or second element of the pair, respectively. Examples:

expression displayed value
(car (cons '"a '(a b c))) a

(car "((xy) 2)) (xy)

(cdr (cons "a '(a b c))) (a b c)

(cdr " ((xy) 2)) (z)

The + function takes two numeric values as arguments and returns their sum.

