

CS 61C (Clancy) Scheme summary
Spring 2002

1

Here's a brief summary of Scheme for the purposes of project 1.

Scheme data

There are two main data types in Scheme: symbols (which include numbers), and
lists. A list is displayed with parentheses enclosing the list elements, for example:

(a b 3)

A list may be empty; the empty list, displayed as (), is named

NIL

. List elements may
also be lists themselves, for example:

((a b) (x () (3 4 5)))

Evaluation of Scheme expressions

A Scheme expression is either a symbol or a list that may be provided as input to the
interpreter. The interpreter executes a loop with the following steps:

1. read the next symbol or list from the user;

2. evaluate it;

3. print the result.

Evaluation is conceptually a big

switch

:

1. A numeral’s value is the corresponding numeric value.

2. A symbol’s value is what it gets initialized to via the

define

 function (see below). If
the symbol has not been provided as an argument to

define

, the error message
“undefined variable” results.

3. A quoted expression’s value is the expression itself, taken literally. For example,
the value of

'(a b)

 is the list

(a b)

. Within a quoted expression, the quote trans-
lates to a call to the function

quote

; thus

'(a b '(x y))

 would evaluate to the list

(a b (quote (x y)))

.

4. A parenthesized expression is evaluated differently, depending on whether or not
it is a

special form

. In a special form, the word following the left parenthesis is
either

quote

 or

define

.

The

quote

 function takes a single argument, the “quoted” expression; the value of
a call to

quote

 is the quoted expression. Thus the value of the expression

(quote (a b))

 is the list

(a b)

.

The

define

 function declares and initializes a variable. The variable declared/ini-
tialized is the first argument of

define

; the value it’s initialized to is the result of
evaluating the second argument. If a variable is used before it appears in a

define

expression, an “undefined variable” error message results. A second

define

 for a
variable merely replaces the value associated with that variable.

5. Otherwise, the first thing after the left parenthesis must name one of the func-
tions

+

,

cons

,

car

, or

cdr

, and the remaining things that precede the right paren-
thesis are arguments. The value is computed by recursively evaluating the
arguments, then applying the function to them.

CS 61C (Clancy) Scheme summary
Spring 2002

2

Builtin functions

The

cons

 function (short for “construct”) takes two arguments, a Scheme expression
and a Scheme list. It returns a

pair

 whose “car” (first element) is the value of the first
argument and whose “cdr” (second element) is the value of the second argument. A
pair whose second element is a list is itself a list. Thus lists may be defined recur-
sively:

A list is either empty—printed as

()

—or the result of evaluating a call to

cons

with a list as the second argument.

A pair that’s not a list is displayed with a dot between the elements of the rightmost

cons

.

Here are some examples.

Note that leaving out the quotes in

(cons 'a '(b c))

, thus trying to evaluate the
expression

(cons a (b c))

, would result in trying to evaluate the symbol

a

, which is
fine if

a

 has been

define

’d, and the expression

(b c)

, which is a call to the function
named

b

 and is thus not allowed in this project.

The

car

 and

cdr

 functions each take a pair—the result of some

cons

 operation—as
argument, and return the first or second element of the pair, respectively. Examples:

The

+

 function takes two numeric values as arguments and returns their sum.

expression displayed value

(cons 1 (cons 2 3)) (1 2 . 3)

(cons 1 '(2 3)) (1 2 3)

(cons 'a '(b c)) (a b c)

(cons '(b c) '(a x)) ((b c) a x)

expression displayed value

(car (cons 'a '(a b c))) a

(car '((x y) z)) (x y)

(cdr (cons 'a '(a b c))) (a b c)

(cdr '((x y) z)) (z)

